kancboom.ru

Мощный блок питания путем модернизации блоков меньшей мощности. Увеличиваем ток (ампераж) блока питания Можно ли разогнать блок питания на пк

Овертвик Блока Питания или из Г**** конфетку J

Эта статья для тех, кто уже не считает наличие в ящике стола паяльника, отсоса для припоя и мультиметра чем-тосверхъестественным. Для тех, кто разбирается в электронике и не боится что-то менять.

Рассмотрим структурную схему современного импульсного БП:

При рассмотрении и прозвонке творения фирмы RLS выяснилось следующее:

- Фильтр импульсных помех отсутствует. Место под него есть, а вот дросселя и емкости нету.

- Резистор межкаскадной разгрузки значительно обуглился. Он был на 0,5Вт, и это явная экономия. Там должен был стоять 2Вт, не меньше.

- Кулер уже давно ревет, как паровоз

- Сгорел выпрямитель шины 12В. Об этом сейчас подробнее…

Как многим известно, получить большие мощности при компактных габаритах можно повышая частоту коммутаций. А чтобы потом выпрямить напряжение, разогнанное до 40-60кГц, нужны очень быстрые диоды. Чем дольше время переключения диода, тем больше тепла при этом переключении выделяется. В хороших БП должны стоять мощные Диоды Шоттки, позволяющие работать даже на радиочастотах. Одно НО: они сравнительно дороги, поэтому производители часто экономят… Заразы… Для справки, по убыванию скорострельности диоды можно расставить в такой ряд: Шоттки, Супер-Фасты, Фасты, Обычные кремниевые.

Вот и в моем случае так. На шину 12В был заявлен ток 10А. НО! Раньше процессоры питались от шины 5В, мой же Prescott уже был из тех, что кушают 12В. Программа PSC насчитала потребление 13А по 12В шине. А раньше эти 12В были не критичны, поэтому там стояли… Нет, не Шоттки, и даже не СФ, а простые фасты… Готовы? На 3А!!! 2 Диода. Т.е. по честному они могли отдавать только 6А. Один из них и приказал долго жить. Вот они:

Ну что ж, подумал я, будем паять… Прежде всего скачал прайс Чип и Дипа и отобрал наиболее привлекательные по параметрам, корпусировке и цене диоды Шоттки фирмы International Rectifiers (IR ) . Чтобы все было наверняка, взял диоды на 40А 60В 48 CTQ 060 . Хороший запасец, не находите?

Ну а чтобы паяльник не грелся понапрасну, порылся в закромах, прошелся по магазинам и устроил БП основательный глобальный тюнинг.

Рассмотрим внимательно фотографию пациента:

Что мы видим? Пока ничего, но для удобства повествования я там все обвел и пронумеровал. Пойдем по порядку. Никто не возражает?

Кулер . Родной кулер выл, как бешенный пылесос. Без зазрений совести откручиваем его. Откручиваем плату и аккуратно, но быстро выпаиваем, ибо дорожки имеют тенденцию отслаиваться. Вместо него ставим полюбившийся всем Zalman F 1 . К нему прилагается ограничительный резистор для тихого режима. Меня тишина всегда устраивала J

Откусываем от резистора тот разъем, который обычно идет к питанию на материнской плате. Черный и красный проводок впаиваем в отверстия от старого кулера. Черный – земля, красный –+12В. Как, я забыл сказать, чтобы перед выпаиванием подписали отверстия, если вдруг производители забыли? Ну извините, будем исправляться.

Теперь остается только вставить разъем кулера в переходник на резисторе – и вуаля, Карлсон готов к работе!

1.Фильтр импульсных помех. В моем БП попросту отсутствовал. Сам фильтр – это последовательно с сетью включенный двойной дроссель и параллельный полипропиленовый конденсатор класса 275В. И то, и другое у меня в запасе было после многочисленных распаек всякого хлама. На плате уже нарисованы обмотки дросселя, не вздумайте перепутать!

Фотки возможного вида дросселя и восстановленного фильтра моего пациента:

Как видите, дроссели бываю разные. Важно одно – они не пропускают помехи из сети в наш драгоценный комп и сглаживают все те помехи, которыми комп, в свою очередь, гадит в сеть. Сверху я дроссель залил термоклеем. Слева желтый конденсатор. Его тоже не было. Его номинал 0,22мкФ на напряжение 275В. Чем больше мощность БП, тем больше он может быть. Я встречал даже до 0,68мкФ.

2.Выпрямитель высокого напряжения . Эта часть состоит из диодного моста и двух электролитических конденсаторов большой емкости, которые выпрямляют напряжение и делят его пополам, создавая виртуальную центральную точку для работы инвертора. Суммарное напряжение на этих конденсаторах – 310В. Поэтому напряжение каждого выбирается не меньше 155В. Ближайшее напряжение сверху из стандартного ряда – это 200В. Такие там и стоят, 220мкФ на 200В:

Но это – минимум работоспособности. Для уверенной работы на большой мощности, а также дляподавления пульсаций сети эти конденсаторы должны быть хотя бы 470мкФ. Тем более что места для них там оставлено предостаточно. Меняем на 470мкФ х 200В. В моем случае в наличии были конденсаторы производства корейского отделения Nippon Chemicon ® для внутреннего рынка. Данная замена обеспечивает стабильный запуск и режимы работы. Кроме того, уменьшение пульсаций снижает нагрев активных компонентов.

Диодный мост нареканий не вызвал. 400В на 3А, т.е. до 500Вт должен держать спокойно.

3.Трансформатор . Тот, что обведен на картинке – самый мощный. Он питает шину 12В, а поскольку нагрузка на нее значительно возросла со времен, когда был сконструирован БП, то и греться он будет значительно сильнее. Но это не проблема. Современные ферриты отлично держат перегрузку, поэтому основные потери будут в меди. Что ж, сделаем так, чтобы сердечник тоже отводил тепло от обмоток. Для этого прямо на крышу трансформатору я приклеил маленький радиатор от усилительной звуковой микросхемы старого телевизора:

Вот такой вот ежик получился J . Только клеить надо аккуратно, на внешнюю поверхность, не касаясь обмоток, если не хотим неприятностей. Клеится на обычный суперклей, хотя можно и на специальный теплопроводный, но, как показали испытания, нагрев не столь критичный, чтобы тратиться на термоклей. Вообще оказалось, что этот трансформатор держит значительно больше заявленной мощности, а токи указаны по допустимым для диодов. Но об этом далее…

4. Выпрямитель низкого напряжения. Вот на нем-то и сгорели несчастные диоды. И как они умудрились неделю проработать, ума не приложу.… Итак, как я уже сказал выше, диоды будем менять. Для этого самое удобное – воспользоваться специальным отсосом для припоя (вещь копеечная, но здорово скрашивает радиолюбительские будни). Переворачиваем плату. Смотрим. Что видим? Много чего. Находим точки, в которых в плату впаяны ножки радиатора (обычно 2). Паяльник-разогрев-отсос. Повторяем до тех пор, пока не будем уверены, что ножки спокойно выйдут из отверстий, если потянуть за радиатор. Ту же процедуру производим с ножками всех диодов, размещенных на радиаторе. Честное слово, отпаять все сразу и вытащит намного удобнее, чем подлезать, отвинчивать и выпаивать каждый поодиночке.

Аккуратно паяльником чистим отверстия, чтобы дырочки были. Если выпаивается или чистится плохо, добавьте немного канифоли – дело пойдет намного быстрее.

Теперь перейдем к установке диодов. Первоначально они были изолированы кремний-органическими резинистыми прокладками. Это полный отстой, заявляю авторитетно! Зато быстро и просто. Я заменил их на слюду, нарезав ее подходящими кусочками и смазав термопастой с обоих сторон. Изоляционная втулка на винте, как правило, сносная, ее можно оставит. Но у меня одна расплавилась, поэтому я одел на винт текстолитовую шайбу и коротенький отрезок фторопластовой трубочки. Получилось как минимум не хуже. Менял я диоды только на шинах +12 и +5В. Оба – на 40А. Привинчиваем их вместо родных. Затягиваем. Проверяем тестером, чтобы корпуса диодов нигде не контактировали с радиатором. Если все отлично – впаиваем всю сборку на место. Еще раз прозваниваем.

Вот, что будем иметь в итоге:

В результате замены обычных диодов на мощные Шоттки, а также за счет уменьшения теплового сопротивления корпус-радиатор, тепловыделение в БП значительно снизилось. Даже рукой ощущается, что выходящий воздух стал слегка теплым по сравнению с той баней, что была до доработки. А это и позволило мне, к слову, снизить обороты вентилятора.

5.Стабилизатор. В этом БП стабилизатор оказался на удивление нормальным, если посмотреть на прочие ляпы изготовителя. Емкости вполне достаточны, дроссели есть, они большие и это хорошо.

Здесь придраться не к чему. Но уж если есть большое желание, фильтрующие емкости можно увеличить до 2200мкФ.

6.Схема управления и защиты . В качестве генератора стоит весьма неплохая микросхема TL 494 в нормальной честной обвязке. То, что вылетевший диод не спалил мне материнку – целиком заслуга грамотной схемы защиты БП. Снимаю шляпу! В 6 узле мне придраться не к чему…

Что же в результате?

В результате мы получили весьма качественный блок питания практически нахаляву!

Теперь ему не страшны пики мощности. Фактически отдаваемая мощность реально возросла с 250(с натягом) до 300 и более Вт.

Теперь щелчок холодильника не повесит программу и не вышибет интернет (а ведь было, друзья, было…)

Теперь он стал тише и холоднее, а значит появились новые возможности для разгона. Причем если при разгоне остального железа идет борьба за каждый градус, то тут я снизил температуру сразу на десяток, это точно.

Теперь новый процессор с лихвой обеспечен питанием для выполнения моих задач.

Теперь мне не надо покупать новый БП, а ведь халява, она, как известно, всегда слаще:-) !!!

Желаю всем удачи! И надеюсь, хоть чем-то эта статья поможет хоть кому-то.

Лишманов Николай aka Lincor 2006г.

P . S . Отдельное спасибо Вячеславу Овсянникову за его статью О правильном «питании»

Как проверить блок питания без ПК - How to check the power supply without PC. Блоки питания Thermaltake с технологией Smart Power Management. Фото. Как проверить блок питания без ПК - How to check the power supply without PC. Как проверить блок питания без ПК - How to check the power supply without PC. Thermaltake Smart DPS G 650W и Toughpower…




Увеличение мощности блока питания. Как измерить мощность мультиметром. Фото. Увеличение мощности блока питания, путем добавления 2 го блока от ноутбука. Увеличение мощности блока питания. Измерение мощности с помощью мультиметра. Как измерить мощность мультиметром. Чтобы знать выбрать нужный блок питания компьютера и правильно его подключить, можете обратиться к великолепным видеосюжетам, представленным в разделе нашего сайта. В специализированном разделе этого сайта собраны самые объективные коллекции…




Регулируемый блок питания из АТ (АТХ) БП компьютера (проверка). БП АТ 145Вт. Переделка в двухполярное напряжение +/-17В. Фото. Первый тест регулируемого блока питания сделанного из БП компьютера. Регулируемый блок питания из АТ (АТХ) БП компьютера (проверка). Изначально акустика была построена на TDA2030A, которые потом заменил TDA2050 (для снятия большей мощности при сохранении качества звучания). Внимание: это первая статья про переделку блока питания. Читайте также вторую часть! БП АТ 145Вт. Переделка в…




Как включить компьютерный блок питания без компьютера. Как запустить компьютерный блок питания. Фото. Иногда появляется необходимость воспользоваться компьютерным блоком питания формата ATX, не подключенным к материнской плате. Как включить компьютерный блок питания без компьютера. Нужны: прямые руки, шнур питания и компьютерный блок питания. Как запустить компьютерный блок питания. Если вы желаете знать как самому проверить блок питания компьютера или выявлять типичные неисправности, можете обратиться к…




Запуск блока питания компьютера ATX. Подключения БП компьютера к автомобильному усилителю. Фото. Использование блока питания компьютера в иных целях (не по прямому назначению). Запуск блока питания компьютера ATX. Как подключить компьютерный блок питания к автомобильному усилителю (комплект: усилитель callcell, саб PolkAudio). Подключения БП компьютера к автомобильному усилителю. Если вы желаете знать как самому проверить блок питания компьютера, а также устранять типичные неисправности, не забывайте изучать видеосюжеты,…


!
Наверное, проблема о которой поговорим сегодня, знакома многим. Думаю, у каждого возникала необходимость увеличения выходного тока блока питания. Давайте же рассмотрим конкретный пример, у вас имеется 19-ти вольтовый адаптер питания от ноутбука, который обеспечивает выходной ток, ну предположим, в районе 5А, а вам нужен 12-ти вольтовый блок питания с током 8-10А. Вот и автору (YouTube канал «AKA KASYAN») понадобился однажды блок питания с напряжением 5В и с током в 20А, а под рукой имелся 12-ти вольтовый блок питания для светодиодных лент с выходным током в 10А. И вот автор решил его переделать.

Да, собрать нужный источник питания с нуля или использовать 5-ти вольтовую шину любого дешевого компьютерного блока питания конечно можно, но многим самодельщикам-электронщикам будет полезно знать, как увеличить выходной ток (или в простонародье ампераж) почти любого импульсного блока питания.

Как правило, источники питания для ноутбуков, принтеров, всевозможные адаптеры питания мониторов и так далее, делают по однотактным схемам, чаще всего они обратноходовые и построению ничем не отличается друг от друга. Может быть иная комплектация, иной ШИМ-контроллер, но схематика одна и таже.




Однотактный ШИМ-контроллер чаще всего из семейства UC38, высоковольтный полевой транзистор, который качает трансформатор, а на выходе однополупериодный выпрямитель в виде одного или сдвоенного диода Шоттки.








После него дроссель, накопительные конденсаторы, ну и система обратной связи по напряжению.





Благодаря обратной связи выходное напряжение стабилизировано и строго держится в заданном пределе. Обратную связь обычно строят на базе оптрона и источника опорного напряжения tl431.




Изменение сопротивления резисторов делителя в его обвязки, приводит к изменению выходного напряжения.


Это было общим ознакомлением, а теперь о том, что нам предстоит сделать. Сразу необходимо отметить, что мощность мы не увеличиваем. Данный блок питания имеет выходную мощность около 120Вт.






Мы собираемся снизить выходное напряжение до 5В, но взамен увеличить выходной ток в 2 раза. Напряжение (5В) умножаем на силу тока (20А) и в итоге получим расчетную мощность около 100Вт. Входную (высоковольтную) часть блока питания мы трогать не будем. Все переделки коснутся только выходной части и самого трансформатора.


Но позже после проверки оказалось, что родные конденсаторы тоже неплохие и имеют довольно низкое внутреннее сопротивление. Поэтому в итоге автор впаял их обратно.




Далее выпаиваем дроссель, ну и импульсный трансформатор.


Диодный выпрямитель довольно неплохой - 20-ти амперный. Самое хорошая то, что на плате имеется посадочное место под второй такой же диод.




В итоге второго такого диода автор не нашел, но так как недавно из Китая ему пришли точно такие же диоды только слегка в другом корпусе, он воткнул пару штук в плату, добавил перемычку и усилил дорожки.




В итоге получаем выпрямитель на 40А, то есть с двукратным запасом по току. Автор поставил диоды на 200В, но в этом нет никакого смысла просто у него таких много.


Вы же можете поставить обычные диодные сборки Шоттки от компьютерного блока питания с обратным напряжением 30-45В и меньше.
С выпрямителем закончили, идем дальше. Дроссель намотан вот таким проводом.


Выкидываем его и берем вот такой провод.


Мотаем около 5-ти витков. Можно использовать родной ферритовый стержень, но у автора поблизости валялся более толстый, на котором и были намотаны витки. Правда стержень оказался слегка длинным, но позже все лишнее отломаем.




Трансформатор - самая важная и ответственная часть. Снимаем скотч, греем сердечник паяльником со всех сторон в течение 15-20 минут для ослабления клея и аккуратно вынимаем половинки сердечника.








Оставляем все это дело минут на десять для остывания. Далее убираем желтый скотч и разматываем первую обмотку, запоминая направление намотки (ну или просто сделайте пару фоток до разборки, в случае чего они вам помогут). Второй конец провода оставляем на штырьке. Далее разматываем вторую обмотку. Также второй конец не отпаиваем.




После этого перед нами вторичная (или силовая) обмотка собственной персоны, именно ее то мы и искали. Эту обмотку полностью удаляем.


Она состоит из 4-ех витков, намотана жгутом из 8-ми проводов, диаметр каждого 0,55мм.




Новая вторичная обмотка, которую мы намотаем, содержат всего полтора витка, так как нам нужно всего лишь 5В выходного напряжения. Мотать будем тем же способом, провод возьмем с диаметром 0,35мм, но вот количество жил аж 40 штук.






Это гораздо больше чем нужно, ну, впрочем, сами можете сравнить с заводской обмоткой. Теперь все обмотки мотаем в том же порядке. Обязательно соблюдайте направление намотки всех обмоток, иначе ничего работать не будет.


Жилы вторичной обмотки желательно залудить еще до начала намотки. Для удобства каждый конец обмотки разбиваем на 2 группы, чтобы на плате не сверлить гигантские отверстия для установки.




После того как трансформатор установлен, находим микросхему tl431. Как уже ранее было сказано, именно она задает выходное напряжение.


В ее обвязке находим делитель. В данном случае 1 из резисторов этого делителя, представляет из себя пару smd резисторов, включенных последовательно.


Второй резистор делителя выведен ближе к выходу. В данном случае его сопротивление 20 кОм.


Выпаиваем этот резистор и заменяем его подстроечным на 10 кОм.


Подключаем блок питания в сеть (обязательно через страховочную сетевую лампу накаливания с мощностью в 40-60Вт). К выходу блока питания подключаем мультиметр и желательно не большую нагрузку. В данном случае это маломощные лампы накаливания на 28В. Затем крайне аккуратно, не дотрагиваясь платы, вращаем подстроечный резистор до получения желаемого напряжения на выходе.


Далее все вырубаем, ждём минут 5, дабы высоковольтный конденсатор на блоке полностью разрядился. Затем выпаиваем подстроечный резистор и замеряем его сопротивление. После чего заменяем его на постоянной, либо оставляем его. В этом случае у нас еще и возможность регулировки выхода появится.

Прогресс не стоит на месте. Производительность компьютеров стремительно растет. А с увеличением производительности растет и энергопотребление. Если раньше на блок питания почти не обращалось внимания, то теперь, после заявления nVidia о рекомендованной мощности питания для своих топовых решений в 480 Вт, все немного изменилось. Да и процессоры потребляют все больше и больше, а если еще все это как следует разогнать...

C ежегодным апгрейдом процессора, материнки, памяти, видео, я давно смирился, как с неизбежным. Но апгрейд блока питания меня почему-то здорово нервирует. Если железо прогрессирует кардинально, то в схемотехнике блока питания таких принципиальных изменений практически нет. Ну, транс побольше, провода на дросселях потолще, диодные сборки помощнее, конденсаторы... Неужели нельзя купить блок питания помощнее, так сказать на вырост, и жить хотя бы пару лет спокойно. Не задумываясь о такой относительно простой вещи, как качественное электропитание.

Казалось чего бы проще, купи блок питания самой большой мощности, какую найдешь, и наслаждайся спокойной жизнью. Но не тут то было. Почему-то все работники компьютерных фирм уверены, что 250-ти ваттного блока питания хватит вам с избытком. И, что бесит больше всего, начинают безапелляционно поучать и безосновательно доказывать свою правоту. Тогда на это резонно замечаешь, что знаешь, чего хочешь и готов за это платить и надо побыстрее достать то, чего спрашивают и заработать законную прибыль, а не злить незнакомого человека своими бессмысленными, ничем не подкрепленными уговорами. Но это только первое препятствие. Идем дальше.

Допустим, вы все же нашли мощный блок питания, и тут вы видите, например, такую запись в прайсе

  • Power Man PRO HPC 420W – 59 уе
  • Power Man PRO HPC 520W – 123 уе

При разнице в 100 ватт цена выросла вдвое. А уж если брать с запасом, то нужно 650 или больше. Сколько это будет стоить? И это еще не все!

В подавляющем большинстве современных блоков питания используется микросхема SG6105. А схема включения ее, имеет одну очень неприятную особенность – она не стабилизирует напряжения 5 и 12 вольт, а на ее вход подается среднее значение этих двух напряжений, полученное с резисторного делителя. И стабилизирует она это среднее значение. Из-за этой особенности часто происходит такое явление, как "перекос напряжений". Ранее использовали микросхемыTL494, MB3759, KA7500. Они имеют ту же особенность. Приведу цитату из статьи господина Коробейникова .

"...Перекос напряжений возникает из-за неравномерного распределения нагрузки по шинам +12 и +5 Вольт. Например, процессор запитан от шины +5В, а на шине +12 висит жёсткий диск и CD привод. Нагрузка на +5В во много раз превышает нагрузку на +12В. 5 вольт проваливается. Микросхема увеличивает duty cycle и +5В приподнимается, но ещё сильнее увеличивается +12 – там меньше нагрузка. Мы получаем типичный перекос напряжений..."

На многих современных материнских платах процессор питается от 12 вольт, тогда происходит перекос наоборот, 12 вольт понижается, а 5 повышается.

И если в номинальном режиме компьютер нормально работает, то при разгоне потребляемая процессором мощность увеличивается, перекос усиливается, напряжение уменьшается, срабатывает защита блока питания от понижения напряжения и компьютер отключается. Если не происходит отключения, то все равно пониженное напряжение не способствует хорошему разгону.

Так, например, было у меня. Даже написал на эту тему заметку – "Лампочка оверклокера " Тогда у меня в системнике работали два блока питания – Samsung 250 W, Power Master 350 W. И я наивно верил, то 600 ватт более чем достаточно. Достаточно может и достаточно, но из-за перекоса все эти ватты бесполезны. Этот эффект я по незнанию усилил тем, что от Power Master подключил материнку, а от Samsung винт, дисководы и т.д. То есть вышло – с одного блока питания берется, в основном 5 вольт, с другого 12. А другие линии "в воздухе", что и усилило эффект "перекоса".

После этого я приобрел 480 ваттный блок питания Euro case. Из-за своего пристрастия к тишине, переделал его в безвентиляторный, о чем тоже писал на страницах сайта . Но и в этом блоке стояла SG6105. При его тестировании я тоже столкнулся с явлением "перекоса напряжений". Только что приобретенный блок питания непригоден для разгона!

И это еще не все! Мне все хотелось приобрести второй компьютер, а старый оставить "для опытов", но элементарно "давила жаба". Недавно я эту зверюгу все же уговорил и приобрел железо для второго компа. Это конечно отдельная тема, но я для него купил блок питания – PowerMan Pro 420 W. Решил проверить его на предмет "перекоса". А так как новая мать питает процессор по шине 12 вольт, то по ней я и проверил. Как? Узнаете, если дочитаете статью до конца. А пока скажу, что при нагрузке 10 ампер, двенадцать вольт провалилось до 11.55. Стандарт допускает отклонение напряжений плюс-минус 5 процентов. Пять процентов от 12 это 0.6 вольта. Иными словами при токе 10 ампер напряжение упало почти до предельно допустимой отметки! А 10 ампер соответствует 120-ти ваттам потребления процессора, что при разгоне вполне реально. В паспорте к этому блоку по шине 12 вольт заявлен ток 18 ампер. Я думаю, не видать мне этих ампер, так как от "перекоса" блок питания выключится гораздо раньше.

Итого – четыре блока питания за два года. И надо брать пятый, шестой, седьмой? Нет, хватит. Надоело платить за то, что заранее не нравится. Что мне мешает самому сделать киловаттный блок питания и пожить спокойно пару лет, с уверенностью в качестве и количестве питания своего любимца. К тому же я затеял изготовление нового корпуса. Корпус я начал делать преогромный и блок питания, нестандартного размера, должен поместиться там без проблем. Но и обладателям стандартных корпусов может пригодиться такое решение. Всегда можно сделать внешний блок питания, тем более прецеденты уже есть. Кажется, Zalman выпустил внешний блок питания.

Конечно, делать блок питания такой мощности "с нуля" - сложно, долго, да и хлопотно. Поэтому и появилась идея собрать один блок из двух фабричных. Тем более они уже есть и, как выяснилось, в теперешнем виде непригодны для разгона. На эту мысль меня натолкнула все та же .

"...Для введения раздельной стабилизации нужен второй трансформатор и вторая микросхема ШИМ, так и делается в серьёзных и дорогих серверных блоках..."

В компьютерном блоке питания существует три сильноточные линии с напряжением 5, 12 и 3.3 вольта. У меня есть два стандартных блока питания, пусть один из них вырабатывает 5 вольт, а другой, помощнее, 12 и все остальные. Напряжение 3.3 вольта стабилизируется отдельно и явления перекоса не вызывает. Линии вырабатывающие -5, -12 и т.д. – маломощны и эти напряжения можно взять с любого блока. А для осуществления этого мероприятия, использовать принцип, изложенный в той же статье г. Коробейникова – отключать ненужное напряжение от микросхемы, а нужное подрегулировать. То есть, теперь SG6105 будет стабилизировать только одно напряжение и, следовательно, явление "перекоса напряжений" не будет.

Так же облегчается режим работы каждого блока питания. Если посмотреть силовую часть, типовой схемы блоков питания (Рис.2), то видно, что обмотки 12, 5 и 3.3 вольта представляют собой одну общую обмотку с отводами. И если с такого транса брать не сразу все три, а только одно напряжение, то мощность трансформатора останется прежней, но на одно напряжение, а не на три.

К примеру, блок по линиям 12, 5, 3.3 вольта выдавал 250 ватт, то теперь практически эти же 250 ватт мы получим по линии, например, 5 вольт. Если раньше общая мощность делилась между тремя линиями, то теперь всю мощность можно получить на одной линии. Но на практике для этого нужно заменить диодные сборки на используемой линии на более мощные. Или включить параллельно дополнительные сборки, взятые с другого блока, на котором эта линия использоваться не будет. Так же максимальный ток будет ограничивать сечение провода дросселя. Может сработать и защита блока питания от перегрузки по мощности (хотя этот параметр можно подрегулировать). Так что полностью утроенную мощность мы не получим, но прибавка будет, да и греться блоки будут гораздо меньше. Можно, конечно, перемотать дроссель проводом большего сечения. Но об этом позже.

Перед тем, как приступить к описанию модификации, нужно сказать несколько слов. Очень непросто писать о переделках электронного оборудования. Не все читатели разбираются в электронике, не каждый читает принципиальные схемы. Но в то же время есть читатели, занимающиеся электроникой профессионально. Как ни напишешь – окажется, что для кого-то непонятно, а для кого-то раздражающе примитивно. Я все же попытаюсь написать так, что бы было понятно подавляющему большинству. А специалисты, думаю, меня простят.

Так же необходимо сказать, что все переделки оборудования вы производите на свой страх и риск. Любые модификации лишают вас гарантии. И естественно, автор, за любые последствия ответственности не несет. Не лишним будет сказать, что человек, берущийся за такую модификацию, должен быть уверен в своих силах, и иметь соответствующий инструмент. Данная модификация выполнима на блоках питания собранных на основе микросхемы SG6105 и немного устаревших TL494, MB3759, KA7500.

Для начала пришлось поискать datasheet на микросхему SG6105 – это оказалось не так уж сложно. Привожу из datasheet нумерацию ног микросхемы и типовую схему включения.

Рис 1. SG6105

Рис. 2. Типовая схема включения.

Рис. 3. Схема включения SG6105

Опишу сначала общий принцип модернизации. Сначала модернизация блоков на SG6105. Нас интересуют выводы 17(IN) и 16(COMP). К этим выводам микросхемы и подключен резисторный делитель R91, R94, R97 и подстроечный резистор VR3. На одном блоке отключаем напряжение 5 вольт, для этого выпаиваем резистор R91. Теперь подстраиваем величину напряжения 12 вольт резистором R94 грубо, а переменным резистором VR3 точно. На другом блоке наоборот, отключаем 12 вольт, для этого выпаиваем резистор R94. И подстраиваем величину напряжения 5 вольт резистором R91 грубо, а переменным резистором VR3 точно.

Провода PC – ON всех блоков питания соединяются между собой и подпаиваются к 20-ти контактному разъему, который потом подключаем к материнке. С проводом PG сложнее. Я взял этот сигнал с более мощного блока питания. В дальнейшем можно реализовать несколько более сложных вариантов.

Рис. 4. Схема распайки разъема

Теперь об особенностях модернизации блоков на основе микросхемы TL494, MB3759, KA7500. В этом случае сигнал обратной связи с выходных выпрямителей напряжений 5 и 12 вольт подается на вывод 1 микросхемы. Поступаем немного по-другому – перерезаем дорожку печатной платы около вывода 1. Другими словами отключаем вывод 1 от остальной схемы. И на этот вывод подаем нужное нам напряжение через резисторный делитель.

Рис 5. Схема для микросхем TL494, MB3759, KA7500

В этом случае номиналы резисторов одинаковы и для стабилизации 5 вольт и для 12. Если вы решили использовать блок питания для получения 5-ти вольт, то резисторный делитель подключаете к выходу 5В. Если для 12, то к 12.

Наверно хватит теории и пора приступать к делу. Сначала надо определиться с измерительными приборами. Для измерения напряжений я применю одни из самых дешевых мультиметров DT838. Точность измерения напряжения у них 0.5 процента, что вполне приемлемо. Для измерения тока использую стрелочный амперметр. Токи нужно мерить большие, поэтому придется самому изготовить амперметр из стрелочной измерительной головки и самодельного шунта. Готовый амперметр с фабричным шунтом приемлемого размера я найти не смог. Нашел амперметр на 3 ампера, разобрал его. Вытащил из него шунт. Получился микроамперметр. Дальше была небольшая сложность. Для изготовления шунта и калибровки амперметра, сделанного из микроамперметра, был нужен образцовый амперметр, способный мерить ток в пределах 15-20 ампер. Для этих целей можно было бы применить токовые клещи, но у меня таковых не оказалось. Пришлось искать выход. Выход я нашел самый простой, конечно, не очень точный, но вполне. Шунт я вырезал из стального листа толщиной 1мм, шириной 4мм и длиной 150 мм. К блоку питания через этот шунт подключил 6 лампочек 12V, 20W. По закону Ома через них потек ток равный 10 амперам.

Р(Wt)/U(V)=I(A), 120/12=10А

Один провод от микроамперметра соединил с концом шунта, а второй двигал по шунту, пока стрелка прибора не показала 7 делений. До 10 делений не хватило длины шунта. Можно было подрезать шунт потоньше, но из-за нехватки времени решил оставить, как есть. Теперь 7 делений этой шкалы соответствуют 10 амперам.

Фото 1 Бюджетный стенд для подбора шунта.

Фото 2. Стенд с включенными 6-ю лампочками 12вольт 20 ватт.

На последней фотографии видно, как просело напряжение 12 вольт при токе 10 ампер. Блок питания PowerMan Pro 420 W. Минус 11.55 показывает из-за того, что я перепутал полярность щупов. На самом деле конечно плюс 11.55. Этот же стенд я буду использовать как нагрузку для регулировки готового блока питания.

Новый блок питания я буду делать на основе PowerMaster 350 W, он будет вырабатывать 5 вольт. Согласно наклейке на нем, он по этой линии должен давать 35 ампер. И PowerMan Pro 420 W. С него я буду брать все остальные напряжения.

В этой статье я покажу общий принцип модернизации. В дальнейшем я планирую переделать полученный блок питания в пассивный. Возможно, перемотаю дроссели проводом большего сечения. Доработаю соединительные кабели на предмет уменьшения наводок и пульсаций. Сделаю мониторинг токов и напряжений. И возможно многое другое. Но это в будущем. Все это описывать в данной статье я не буду. Цель статьи – доказать возможность получения мощного блока питания, путем модернизации двух-трех блоков меньшей мощности.

Немного о технике безопасности. Все перепайки производятся, естественно, при выключенном блоке. После каждого выключения блока, перед дальнейшими работами, разряжайте большие конденсаторы. На них присутствует напряжение 220 вольт, и заряд они накапливают очень приличный. Не смертельный, но крайне неприятный. Электрический ожог заживает долго.

Начну с PowerMaster. Разбираю блок, вынимаю плату, отрезаю лишние провода...

Фото 3. Блок PowerMaster 350 W

Нахожу микросхему ШИМ, она оказалась TL494. Нахожу вывод 1, осторожно перерезаю печатный проводник и подпаиваю к выводу 1 новый резисторный делитель (см. Рис5). Подпаиваю вход резисторного делителя к пятивольтовому выходу блока питания (обычно это красные провода). Еще раз проверяю правильность монтажа, это никогда не бывает лишним. Подключаю модернизированный блок к своему бюджетному стенду. На всякий случай, спрятавшись за стул, включаю. Взрыва не произошло и это даже вызвало легкое разочарование. Для запуска блока соединяю провод PS ON с общим проводом. Блок включается, лампочки загораются. Первая победа.

Переменным резистором R1 на малой нагрузке блока питания (две лампочки по 12V, 20W и спот 35W) выставляю выходное напряжение 5 вольт. Напряжение замеряю непосредственно на выходном разъеме.

Фотоаппарат у меня не самый лучший, мелкие детали не видит, поэтому прошу прощения за качество снимков.

Блок питания на непродолжительное время можно включать без вентилятора. Но нужно следить за температурой радиаторов. Будьте осторожны, на радиаторах некоторых моделей блоков питания присутствует напряжение, иногда высокое.

Не выключая блок, начинаю подключать дополнительную нагрузку – лампочки. Напряжение не меняется. Блок стабилизирует хорошо.

На этой фотографии я подключил к блоку все лампочки, какие были в наличии – 6 ламп по 20w, две по 75 w, и спот 35w. Ток, текущий через них по показаниям амперметра в пределах 20 ампер. Никакого "проседания", никаких "перекосов"! Полдела сделано.

Теперь берусь за PowerMan Pro 420 W. Так же разбираю его.

Нахожу на плате микросхему SG6105. За тем отыскиваю нужные выводы.

Принципиальная схема, приведенная в статье г. Коробейникова, соответствует моему блоку, нумерация и номиналы резисторов те же. Для отключения 5-ти вольт выпаиваю резистор R40 и R41. Вместо R41 впаиваю два переменных резистора соединенных последовательно. Номинал 47 кОм. Это для грубой регулировки напряжения 12 вольт. Для точной регулировки используется резистор VR1 на плате блока питания

Рис 6. Фрагмент схемы блока питания PowerMan

Опять достаю свой примитивный стенд и подключаю к нему блок питания. Сначала подключаю минимальную нагрузку – спот 35W.

Включаю, подстраиваю напряжение. Затем, не выключая блок питания, подключаю дополнительные лампочки. Напряжение не меняется. Блок прекрасно работает. По показаниям амперметра ток достигает 18 ампер и никакого "проседания" напряжения.

Второй этап закончен. Теперь осталось проверить, как будут работать блоки в паре. Перекусываю провода красного цвета идущие от PowerMan к разъему и молексам, изолирую их. А к разъему и молексам подпаиваю пятивольтовый провод от PowerMaster 350 W, так же соединяю общие провода обоих блоков. Провода Power On блоков питания объединяю. PG беру с PowerMan. И подключаю этот гибрид к своему системному блоку. На вид он несколько странен и если кому-то захочется узнать о нем поподробнее, прошу на ПС .

Конфигурация такая:

  • Мать Epox KDA-J
  • Процессор Athlon 64 3000
  • Память Digma DDR500, две планки по 512Mb
  • Винт Samsung 160Gb
  • Видео GeForce 5950
  • DVD RW NEC 3500

Включаю, все прекрасно работает.

Опыт удался. Теперь можно приступать к дальнейшей модернизации "объединенного блока питания". Перевод его на пассивное охлаждение. На фотографии видна панель с приборами – это все будет подключено к данному блоку. Стрелочные приборы – мониторинг токов, цифровые приборы в круглых отверстиях под стрелочными – мониторинг напряжений. Ну и тахометр, и все такое, об этом я уже писал на своей персоналке . Но это в дальнейшем.

Влияние "объединенного блока питания" на дальнейший разгон я не проверял. Доделаю, тогда и проверю. Процессор уже разогнан до 2.6 гигагерц по шине, при напряжении на проце 1.7 вольта. Гнал я его на безвентиляторном блоке питания, но при таком разгоне 12 вольт на нем проседали до 11.6 вольта. А гибрид выдает ровно 12. Так что, возможно, еще немного мегагерц я из него выжму. Но это будет другая история.

Перечень используемой литературы:

  1. Журнал "Радио". – 2002.-№ 5, 6, 7. "Схемотехника блоков питания персональных компьютеров" авт. Р. Александров

Ждём Ваших комментариев в специально созданной .

Статья основана на 12-летнем опыте ремонта и обслуживания компьютеров и их блоков питания.

Стабильная и надежная работа компьютера зависит от качества и свойств его комплектующих. С процессором, памятью, материнкой более-менее все понятно – чем больше мегагерц, гигабайт и т. д., тем лучше. А чем отличаются блоки питания за 15 $ и за, скажем, 60 $ ? Те же напряжения, та же мощность на этикетке – зачем платить больше? В результате приобретается блок питания с корпусом за 25-35 $ Себестоимость же блока питания в нем с учетом доставки из Китая, растаможки и перепродажи 2-3 посредниками, составляет всего 5-7 $ !!! В результате компьютер может глючить, зависать, перезагружаться ни с того ни с сего. Стабильность работы компьютерной сети также зависит от качества блоков питания компьютеров, ее составляющих. При работе с блоком бесперебойного питания, и в момент переключения его на внутреннюю батарею, перезагружаться. Но самое страшное, если в результате выхода из строя, такой блок питания похоронит еще пол-компьютера включая жесткий диск. Восстановление информации с жестких дисков, сожженных блоком питания, нередко превышает стоимость самого жесткого диска в 3-5 раз… Объясняется все просто – так, как качество блоков питания сложно сходу проконтролировать, особенно если они продаются внутри корпусов, то это повод для китайского дядюшки Ли сэкономить за счет качества и надежности – за наш счет.

А делается все чрезвычайно просто – наклейкой новых бирок с большей заявленной мощностью на старые блоки питания. Мощность на наклейках из года в год все больше и больше, а начинка блоков все та же. Этим грешат Codegen, JNC, Sunny, Ultra, разные «no name».

Рис. 1 Типичный китайский дешевый блок питания ATX. Доработка целесообразна.

Факт: новый блок питания Codegen 300W нагрузили на сбалансированную нагрузку 200 Вт. Через 4 минуты работы задымились его провода, ведущие к разъёму ATX. При этом наблюдался разбаланс выходных напряжений: по источнику +5В – 4, 82В, по +12В – 13,2В.

Чем конструктивно отличается хороший блок питания от тех «no name», что обычно покупаются? Даже не вскрывая крышку, как правило, можно заметить разницу в весе и толщине проводов. За редким исключением хороший блок питания тяжелее.

Но главные отличия внутри. На плате дорогого блока питания все детали на месте, достаточно плотный монтаж, основной трансформатор приличных размеров. В отличие от него, дешевый кажется полупустым. Вместо дросселей вторичных фильтров - перемычки, часть фильтрующих конденсаторов не запаяна вообще, сетевой фильтр отсутствует, трансформатор малых размеров, вторичные выпрямители тоже, либо выполнены на дискретных диодах. Наличие корректора фактора мощности вообще не предусмотрено.

Зачем нужен сетевой фильтр? Во время своей работы любой импульсный блок питания наводит высокочастотные пульсации как по входной (питающей) линии, так и по каждой из выходных. Компьютерная электроника весьма чувствительна к этим пульсациям, поэтому даже самый дешевый блок питания использует пусть упрощенные, минимально достаточные, но все же фильтры выходных напряжений. На сетевых фильтрах обычно экономят, что является причиной выброса в осветительную сеть и в эфир достаточно мощных радиочастотных помех. На что это влияет и к чему это приводит? В первую очередь это «необъяснимые» сбои в работе компьютерных сетей, коммуникаций. Появление дополнительных шумов и помех на радиоприемниках и телевизорах, особенно при приеме на комнатную антенну. Это может вызывать сбои в работе другой высокоточной измерительной аппаратуры, находящейся рядом, или включенной в ту же фазу сети.

Факт: чтобы исключить влияние разных приборов друг на друга, вся медицинская техника проходит жесткий контроль на предмет электромагнитной совместимости. Хирургическая установка на базе персонального компьютера, которая всегда с успехом проходила эту проверку с большим запасом по характеристикам, оказалась забракованной по причине превышения предельно допустимого уровня помех в 65 раз. А там всего то в процессе ремонта был заменен блок питания компьютера на приобретенный в местном магазине.

Еще факт: медицинский лабораторный анализатор со встроенным персональным компьютером вышел из строя – в результате броска сгорел штатный блок питания ATX. Чтобы проверить, не сгорело ли еще что, на место сгоревшего подключили первый попавшийся китаец (оказался JNC-LC250). Нам так и не удалось запустить этот анализатор, хотя все напряжения, выдаваемые новым блоком питания и измеренные мультиметром, были в норме. Хорошо догадались снять и подключить блок питания ATX от другого мед прибора (тоже на базе компьютера).

Наилучший с точки зрения надежности вариант – изначально приобретение и использование качественного блока питания. Но что делать, если денег в обрез? Если голова и руки на месте, то неплохие результаты можно получить уже доработкой дешевых Китайцев. Они – люди экономные и предусмотрительные – спроектировали печатные платы по критерию максимальной универсальности, т. е. таким образом, чтобы в зависимости от количества установленных комплектующих можно было бы варьировать качеством и, соответственно, ценой. Другими словами, если мы установим те детали, на которых производитель сэкономил, и еще кое – что поменяем – получим неплохой блок средней ценовой категории. Конечно, это не сравнить с дорогими экземплярами, где топология печатных плат и схемотехника изначально рассчитывалась для получения хорошего качества, как и все детали. Но для среднестатистического домашнего компьютера вполне приемлемый вариант.

Итак, какой блок подойдет? Критерий первоначального отбора – величина самого большого ферритового трансформатора. Если он имеет бирку, на которой вначале идут цифры 33 или больше и имеет размеры 3х3х3 см или больше – имеет смысл возиться. В противном случае приемлемого баланса напряжений +5В и +12В при изменении нагрузки добиться не удастся, и кроме того трансформатор будет сильно греется, что значительно снизит надежность.

  1. Заменяем 2 электролитических конденсатора по сетевому напряжению на максимально возможные, способные поместиться на посадочные места. Обычно в дешевых блоках их номиналы 200 µF х 200 V, 220 µF x 200 V или в лучшем случае 330 µF x 200 V. Меняем на 470 µF x 200 V или лучше на 680 µF x 200 V. Эти электролиты, как и любые другие в компьютерных блоках питания, ставить только из серии 105 градусов!
  2. Рис. 2 Высоковольтная часть блока питания, включающая выпрямитель, полумостовой инвертор, электролиты на 200 V (330 µF, 85 градусов). Сетевой фильтр отсутствует.

  3. Установка конденсаторов и дросселей вторичных цепей. Дросселя можно взять из разборки на радиорынке или намотать на соответствующем куске феррита или кольце 10-15 витков провода в эмалевой изоляции диаметром 1,0-2,0 мм (больше лучше). Конденсаторы подойдут на 16 V, Low ESR типа, 105 градусов серия. Емкость следует выбирать максимальной, чтобы конденсатор смог поместиться на штатное место. Обычно 2200 µF. При мотаже соблюдаем полярность!
  4. Рис. 3 Низковольтная часть блока питания. Вторичные выпрямители, электролитические конденсаторы и дроссели, некоторые из них отсутствуют.

  5. Меняем выпрямительные диоды и модули вторичных выпрямителей на более мощные. В первую очередь это касается выпрямительных модулей на 12 V. Это обьясняется тем, что в последние 5-7 лет энергопотребление компьютеров, в частности материнских плат с процессором, возрастало в большей степени по шине + 12 V.
  6. Рис. 4 Выпрямительные модули для вторичных источников: 1 - наиболее предпочтительные модули. Устанавливаются в дорогих блоках питания; 2 - дешевые и менее надежные; 3 - 2 дискретных диода - самый экономный и ненадежный вариант, подлежащий замене.

  7. Устанавливаем дроссель сетевого фильтра (место для его установки см. рис. 2).

  8. Если радиаторы блока питания выполнены в виде пластин с прорезанными лепестками, разгибаем эти лепестки в разные стороны, чтобы максимально повысить эффективность радиаторов.

    Рис. 5 Блок питания ATX с доработанными радиаторами охлаждения.
    Одной рукой держим подвергающийся доработке радиатор, другой рукой с помощью плоскогубец с тонкими кончиками отгибаем лепестки радиатора. Держать за печатную плату не следует - высока вероятность повредить пайку деталей, находящихся на радиаторе и вокруг него. Эти повреждения могут быть не видны невооруженным глазом и привести к печальным последствиям.

Таким образом, вложив в модернизацию дешевого блока питания ATX 6-10$, можно получить неплохой БП для домашнего компьютера.

Блоки питания боятся нагрева, который приводит к выходу из строя полупроводников и электролитических конденсаторов. Усугубляется это тем, что воздух проходит через компьютерный блок питания уже предварительно нагретый элементами системного блока. Рекомендую вовремя чистить блок питания от пыли изнутри и за одно проверять, нет ли вздутых электролитов внутри.

Рис. 6 Вышедшие из строя электролитические конденсаторы - вздувшиеся верхушки корпусов.

В случае обнаружения последних, меняем на новые и радуемся, что все осталось целым. Это же относится и ко всему системному блоку.

Внимание - бракованные конденсаторы CapXon! Электролитические конденсаторы фирмы CapXon серии LZ 105 o C (устанавливаемые в материнские платы и компьютерные блоки питания), пролежавшие в отапливаемом жилом помещении от 1 до 6-ти месяцев вздулись, из некоторых выступил электролит (рис. 7). Электролиты в употреблении не были, находились на хранении, как и остальные детали мастерской. Измеренное эквивалентное последовательное сопротивление (ESR) оказалось в среднем на 2 порядка! выше предельного для этой серии.


Рис. 7 Бракованные электролитические конденсаторы CapXon - вздувшиеся верхушки корпусов и завышенное эквивалентное последовательное сопротивление (ESR).

Интересное замечание: вероятно ввиду низкого качества конденсаторы CapXon не встречаются в аппаратуре высокой надежности: блоках питания серверов, роутеров, медицинской аппаратуры и т. д. Исходя из этого в нашей мастерской в поступающей аппаратуре с электролитами CapXon поступают как с заведомо неисправными - сразу меняют на другие.

Загрузка...