Разница между дифференциальным и инкрементным резервным копированием. Инкрементное резервное копирование (Incremental backup) Инкрементный бэкап
Виды (типы) резервного копирования различаются по многим параметрам. В этой статье мы рассмотрим основные алгоритмы резервного копирования, проведем краткий обзор каждого из традиционных и новых видов резервного копирования. Покажем, чем они отличаются, а так же перечислим преимущества и недостатки каждого из них.
Full Backup: ПОЛНОЕ РЕЗЕРВНОЕ КОПИРОВАНИЕ
Данный метод создает полную копию набора исходных данных, поэтому является лучшим вариантом защиты с точки зрения управления и скорости восстановления данных. Но это метод занимает в разы больше времени, чем другие способы резервного копирования, а также создаёт значительную сетевую нагрузку.
Обычно, полные резервные копии делают периодически и объединяют их с другими типами резервного копирования.
Преимущества Full Backup:
- быстрое восстановление данных
- простое управление
- все данные содержаться в одной резервной копии
Недостатки Full Backup:
- требует много места для хранения резервных копий
- длительное выполнение резервного копирования
Differential Backup: ДИФФЕРЕНЦИАЛЬНОЕ РЕЗЕРВНОЕ КОПИРОВАНИЕ
Дифференциальный тип резервного копирования является промежуточным решением между полным резервным копированием и инкрементными резервными копиями. Подобно инкрементному резервному копированию, отправной точкой для дифференциальной резервной копии является создание полной резервной копии и резервное копирование только измененных данных. Однако, в отличие от инкрементных резервных копий, дифференциальная резервная копия сохраняет не данные, которые были изменены с момента последней резервной копии, а данные, которые были изменены с момента первоначальной полной резервной копии. Таким образом, полная резервная копия является постоянной точкой отсчета для последовательных резервных копий.
Дифференциальная резервная копия позволяет быстрее восстанавливать данные по сравнению с инкрементным резервным копированием, поскольку для этого требуется всего две части резервной копии: полная резервная копия и последняя дифференциальная резервная копия. Скорость резервного копирования / восстановления, находится где-то между полным и инкрементным методом резервного копирования. Резервное копирование выполняется быстрее, чем полная резервная копия, но медленнее, чем инкрементное резервное копирование. Восстановление выполняется медленнее, чем у полной резервной копии, но быстрее, чем у инкрементных резервных копий. Объем памяти, необходимый для дифференциального резервного копирования, по крайней мере на определенный период меньше, чем требуется для полного резервного копирования и больше, чем требуется для инкрементного резервного копирования.
Преимущества Differential Backup:
- резервное копирование быстрее, чем полное, но медленнее, чем инкрементное
- восстановление быстрее, чем инкрементное, но медленнее чем полное
- более надежный способ (для восстановления требуется только полная и последняя резервная копия)
Недостатки Differential Backup:
- каждый последующий бэкап выполняется дольше по времени и занимает больше дискового пространства в хранилище
Incremental Backup: ИНКРЕМЕНТНОЕ РЕЗЕРВНОЕ КОПИРОВАНИЕ
Инкрементное резервное копирование использует полную копию, как начальную точку. Затем выполняется резервное копирование только блоков данных, которые были изменены с момента последнего резервного задания, с заданным периодом выполнения задания. В зависимости от политики хранения резервных копии, через определенный период создается новая полная копия для повторения цикла.
Представим, что в воскресенье мы сделали полную копию данных, в понедельник мы делаем копию данных, которые изменились с момента полной копии. Во вторник только данные, которые изменились с понедельника, и так все дни до воскресенья, а в воскресенье делаем новую полную копию. Таким образом, инкрементное резервное копирование можно выполнять так часто, как требуется, так как сохраняются только копии последних изменений. Инкрементное резервное копирование позволяет уменьшить объем передаваемых данных, тем самым сокращая время выполнения бэкапа и снижая нагрузку на сеть. Резервное копирование выполняется быстро и требует гораздо меньше места для хранения, по сравнению с полными копиями, но процесс восстановления занимает больше времени, поскольку необходимо восстановить как полную резервную копию, так и целую цепочку последовательных блоков. Если хотя бы один блок в цепочке будет отсутствовать или окажется поврежденным, выполнение восстановления может стать невозможным.
Преимущества Incremental Backup:
- высокая скорость резервного копирования (копируются только блоки изменённых данных)
- меньше места для хранения (по сравнению с полным)
- большее количество точек восстановления
Недостатки Incremental Backup:
- низкая скорость восстановления данных (необходимо восстановить как начальную полную копию, так и все последующие блоки)
- менее надежна (зависит от целостности всех блоков в цепочке)
Reverse Incremental Backup: ОБРАТНОЕ ИНКРЕМЕНТНОЕ РЕЗЕРВНОЕ КОПИРОВАНИЕ
Обратное инкрементное резервное копирование, аналогично другим типам резервного копирования, начинается с создания полной резервной копии, но при каждом новом резервном копировании, все данные из предыдущей (полной) резервной копии перемещаются в новую резервную копию, а предыдущая РК заменяется инкрементом. Таким образом, отличие данного типа заключается в том, что последняя (самая новая) резервная копия всегда является полной, а старые резервные копии наоборот, всегда есть инкременты. Это дает возможность более быстрого восстановления, так как именно самая последняя резервная копия чаще является самой ценной и востребованной.
В отличии от обратного, при обычном инкрементном резервировании последняя резервная копия зависит от всех сделанных ранее, поэтому на восстановление данных уходит больше времени (так как в процессе участвуют ни одна, а несколько резервных копий), а так же если хоть одна копия повреждена, восстановление данных будет не возможно.
Преимущества Reverse Incremental Backup:
- быстрое восстановление (для последних копий)
- более высокая безопасность данных
- более гибкое управление объемом хранилища (buckup repository). При не хватке места, без последствий можно удалить старые версии резервных копий
- низкая загрузка сети (как для обычного инкрементного РК)
Недостатки Reverse Incremental Backup:
- более высокие требования к серверу резервного копирования
- больше времени для восстановления старых копий
Synthetic Full Backup: СИНТЕТИЧЕСКОЕ РЕЗЕРВНОЕ КОПИРОВАНИЕ
Синтетическая резервная копия имеет много общего с обратным инкрементным типом резервного копирования. Различия заключается в том, что для создания новой полной резервной копии используются ранее созданные full и Incremental Backup. Синтетическое резервное копирование, как и остальные способы, начинается с создания полной резервной копии, за которой следует серия инкрементных резервных копий. В заданный момент существующая полная резервная копия и инкременты объединяются (синтезируются) в новую полную резервную копии, эта новая копия станет исходной для создания следующих инкрементов и т.д. Синтетический тип резервного копирования обладает такими же преимуществами как full backup, но при этом решает его недостатки, меньше нагружает сеть и экономит пространство для хранения бэкапа.
Преимущества Synthetic Full Backup:
- высокая скорость резервного копирования и восстановления
- гибкое управление данными
- низкая загрузка сети (для получения инкрементных РК)
Недостатки Synthetic Full Backup:
- более высокая нагрузка на сервер резервного копирования
- в некоторых случаях лицензируется, как отдельная опция
Вывод
Мы рассмотрели основные методы резервного копирования. При выборе типа резервного копирования необходимо учитывать плюсы и минусы в каждом отдельном случаи, исходя из политики защиты данных, объёма хранилища, вычислительными ресурсами, пропускной способностью сети, соглашениями об уровне обслуживания, критическими областями данных и т.д.
Приветствую вас, жители хабро-мира! Мы продолжаем знакомить вас с технологиями True Image. На этот раз поговорим о том, как настроить процесс резервного копирования таким образом, чтобы
- данные были надежно защищены.
- папка с резервными копиями (они же – бэкапы, они же – backups) не «съела» все свободное пространство вашего диска.
- не дублировать одну и ту же информацию в разных бэкапах.
Стратегия резервного копирования состоит из двух этапов:
- Создание схемы резервного копирования (backup scheme).
- Планирование резервного копирования (backup scheduling).
Методы создания бэкапов
Создание схемы начинается с понимания методов резервного копирования. Таких методов три: полное, инкрементное и дифференциальное резервное копирование (full, incremental, differential backup). Зачем они нужны и в чем разница? Смотрим.Полное резервное копирование
Тут все очень просто. В файл бэкапа записываются все данные, которые были выбраны для резервного копирования.На рисунке: все бэкапы - полные.
Такие бэкапы самые надежные, но и самые большие. При этом для восстановления потребуется только один файл.
Инкрементное резервное копирование
В файл бэкапа записываются только изменения, которые произошли с момента последнего резервного копирования.На рисунке: 1.tib - полный бэкап (первый бэкап всегда полный), 2.tib, 3.tib, 4.tib - инкрементные бэкапы.
Инкрементные бэкапы гораздо меньше полных. Однако для восстановления потребуется предыдущий полный бэкап (на рисунке - 1.tib) и вся цепочка инкрементных бэкапов заканчивая тем бэкапом, из которого вы хотите восстановить данные.
Дифференциальное резервное копирование
В файл бэкапа записываются только изменения, которые произошли с момента последнего полного резервного копирования.На рисунке: 1.tib - полный бэкап (первый бэкап всегда полный), 2.tib, 3.tib, 4.tib - дифференциальные бэкапы.
Дифференциальные бэкапы меньше полных, но больше инкрементных. Для восстановления потребуется сам дифференциальный бэкап и предыдущий полный бэкап (на рисунке - 1.tib).
Цепочки и схемы
Ну вот мы и подошли к самому интересному. Разумеется, вы уже догадались. Три метода резервного копирования дают нам массу всевозможных вариантов так называемых цепочек бэкапов. Цепочка – это один полный бэкап и все зависящие от него инкрементные и/или дифференциальные бэкапы. Схема же состоит из одной или нескольких цепочек, а также содержит правила удаления старых бэкапов.Действительно, вариантов цепочек может быть великое множество. Но это в теории. На практике же в основу цепочки берется только один из методов: полный, инкрементный или дифференциальный.
«Тут же все ясно как белый день! Всегда создавай полные бэкапы!» – скажете вы и будете правы. Но как всегда есть одно больше «но». Полные бэкапы – самые увесистые. Вам не жалко забить ваш 2 ТБ диск бэкапами? Тогда это самое лучшее решение. Но большинству хочется максимальной надежности и вариативности при минимальных потерях дискового пространства. Поэтому, как говорится, давайте разбираться. Вот со схем на основе полных бэкапов и начнем.
Схемы на основе полных бэкапов
Создавать только полные бэкапы – это действительно самый надежный способ защиты данных. И не допустить бесконтрольного раздувания бэкапа тоже вполне возможно. Нужно всего лишь настроить правила очистки, но об этом чуть ниже.Недостатки такой схемы:
- На создание каждого бэкапа уходит много времени.
- Значительная трата дискового пространства.
- Небольшое количество бэкапов, т.е. точек во времени, на которые можно «откатиться».
- Дублирование одной и той же информации в разных бэкапах.
Схемы на основе инкрементных бэкапов
При такой схеме создается один полный бэкап и цепочка зависимых от него инкрементных. Достоинства очевидны – бэкапы создаются быстро и весят мало, т.е. можно позволить себе насоздавать их гораздо больше, чем при схеме с полными бэкапами. Как итог, вы получаете максимальную вариативность при выборе точки восстановления. Но есть один серьезный недостаток – низкая надежность. При повреждении любого из бэкапов все последующие превращаются в мусор – восстановиться из них вы не сможете. Можно ли каким-то образом повысить надежность? Да, можно. Самый простой способ – создавать новый полный бэкап после нескольких инкрементных, скажем, после четырех или пяти. Таким образом, мы получаем схему с несколькими цепочками, и повреждение одной из цепочек не повлияет на другие.Эта схема универсальная, ее можно использовать для защиты как дисков, так и файлов.
Схемы на основе дифференциальных бэкапов
При такой схеме создается один полный бэкап и зависимые от него дифференциальные. Этот подход объединяет в себе достоинства двух предыдущих. Так как дифференциальные бэкапы меньше полных и больше инкрементных, вы получаете среднюю вариативность при выборе точки восстановления и довольно высокую надежность. Но без недостатков все равно не обойдешься. Чем дальше по времени отстоит дифференциальный бэкап от своего полного бэкапа, тем он «тяжелее», и даже может превысить размер полного бэкапа. Решение здесь то же, что и при инкрементном подходе, - разбавляйте ваши дифференциальные бэкапы полными. В зависимости от интенсивности изменения защищаемых данных новый полный бэкап рекомендуется создавать после двух-пяти дифференциальных.Такой схемой можно защитить ваш системный раздел, если дисковое пространство не позволяет вам хранить несколько полных бэкапов.
Планирование
Здесь все просто. Вы составляете расписание, а True Image обновляет для вас бэкапы точно в назначенное вами время и в соответствии с настроенной схемой. Чем чаще меняются данные, тем чаще рекомендуется их бэкапить. К примеру, системный раздел можно бэкапить раз в месяц, а вот файлы, с которыми вы работаете каждый день, и бэкапить рекомендуется каждый день или даже чаще.Разумеется, когда вам срочно нужно создать бэкап, не обязательно ждать запланированного времени. Вы всегда можете запустить резервное копирование вручную.
Правила очистки
Практика показывает, что пользователи редко задумываются об очистке, когда настраивают резервное копирование. А зря. Ведь потом они обнаруживают, что бэкап «съел» все свободные гигабайты диска.Правила очистки можно и нужно настроить при создании схемы резервного копирования. Настроить можно аж по трем критериям:
- Максимальный «возраст» цепочек бэкапов.
- Максимальное количество цепочек бэкапов.
- Максимальный общий размер бэкапа.
Как насчет бэкапа в облачное хранилище?
Все, о чем мы до сих пор говорили, относится к бэкапам, которые вы храните у себя на внутреннем или внешнем жестком диске, на NAS-е, FTP-сервере и т.д. А как насчет бэкапа в облако? True Image сохраняет как файловые, так и дисковые бэкапы в Acronis Cloud по простой инкрементной схеме – один полный бэкап и цепочка инкрементных – и не позволяет ее менять. На резонный вопрос «почему» ответ прост – эта схема самая бережливая к дисковому пространству, а сохранность бэкапов в облаке гарантирует Acronis.Правила очистки облачного бэкапа чуть проще, чем обычного.
Вы можете ограничить бэкап по «возрасту» и по количеству версий каждого из файлов, которые хранятся в облаке. Ограничивать бэкап по объему хранилища было бы не очень логично. Ведь в первую очередь Acronis Cloud используется именно для хранения бэкапов.
Итак, что получаем в сухом остатке. Решите для себя:
- Какой объем данных вы хотите защитить.
- Насколько часто эти данные будут меняться.
- Какой объем свободного пространства вы готовы отдать под бэкапы.
Многим известны различные системы создания образов дисков и резервного копирования данных, например Acronis True Image, Pagaron Drive Backup, Ghost, Time Machine для Mac-совместимых компьютеров и др. Компания Microsoft также внедрила в свои операционные системы систему резервного копирования данных, которая доступна как для обычных пользователей, так и для системных администраторов. До выпуска операционной системы Windows Vista компания Microsoft предлагала пользователям систему резервного копирования NTBackup и утилиту System Restore, которые имели массу недостатков. С выходом Windows Vista и переходом на формат хранения образов VHD появилась возможность более простого резервного копирования данных и создания образов операционной системы средствами нового комплекса утилит под названием Windows Backup and Restore. После выпуска новых операционных систем этот компонент совершенствовался и модифицировался. В данной статье мы рассмотрим, что предлагает компания Microsoft конечному пользователю для резервирования данных в недавно вышедшей операционной системе Windows 8. Но сначала вкратце расскажем об основных типах резервного копирования, которые реализованы в многочисленных продуктах различных компаний.
Виды резервного копирования
Резервное копирование подразделяется на различные виды в зависимости от задач, которые ставятся перед реализующим его программным обеспечением. В одних случаях пользователям необходимо лишь создавать копии важных файлов, хранящихся на диске, в других - создавать полноценные образы операционной системы с возможностью отката всех предыдущих изменений. При этом для системных администраторов предоставляются возможности централизованного хранения резервных копий данных, что упрощает контроль за версиями резервных копий и восстановление систем по мере необходимости. Естественно, в зависимости от выбранного типа резервного копирования задействуется тот или иной алгоритм сравнения и сохранения файлов - либо побайтовое, либо посекторное копирование с источника данных, когда информация в точности записывается на носитель с бекапом. Для восстановления файлов и данных также могут использоваться функции файловых систем, поддерживающих журналирование и протоколирование изменений, - вначале делается полный слепок файловой системы, а данные в резервную копию сохраняются по мере необходимости, если отдельные файлы помечены как измененные. Файловые системы с расширенной поддержкой контроля версии подходят для такого случая лучшего всего, поскольку существенно экономят место на резервном носителе. Кроме традиционного создания резервных копий файлов, которые не используются в данный момент, существуют алгоритмы резервирования в реальном времени. В этом случае резервное копирование происходит даже тогда, когда файл открыт в какойлибо программе. Такая возможность достигается благодаря использованию снапшотов (snapshot) файловых систем и активно применяется, например, в системах виртуализации для работы с виртуальными дисковыми накопителями. Процесс резервирования данных может происходить несколькими путями. Рассмотрим наиболее распространенные из них.
Клонирование разделов и создание образов
Клонирование подразумевает копирование раздела или разделов диска со всеми файлами и директориями, а также файловыми системами на резервный носитель, то есть создание полной копии данных на другом носителе. Это требует большого количества пространства на резервном носителе, но в то же время позволяет добиться наиболее полного резервирования отдельного ПК или диска с данными. Также особо следует упомянуть о клонировании системы в виде специального образа - виртуального накопителя, то есть отдельного файла, который может содержать в себе несколько разделов диска. Такой образ может быть создан средствами самой операционной системы. Он позволяет сократить объем данных, а также предоставляет возможность впоследствии работать с ним, как с обычным диском, либо подключать его к виртуальным машинам, что упрощает перенос операционных систем с одного сервера или компьютера на другой. Сегодня виртуальные образы набирают популярность за счет гибкости подключения, а также кроссплатформенности и легкого переноса с одного компьютера на другой. Как правило, клонирование или создание образа для резервного копирования происходит достаточно редко, поскольку объем, занимаемый резервной копией, очень большой. Подобные процедуры применяются в большинстве случаев именно для создания копии операционной системы со всеми файлами, а не для резервирования отдельных данных на диске. Для резервирования пользовательских данных, которые часто меняются или задействуются в работе, повсеместно используется другой тип резервного копирования - полное файловое резервирование.
Полное файловое резервирование
Такой тип резервного копирования подразумевает создание дубликатов всех файлов на носителе простым методом - копированием из одного места в другое. Полное файловое резервирование вследствие длительности процесса обычно проводится в нерабочее время, что объясняется слишком большими объемами данных. Такой тип резервирования позволяет сохранить важную информацию, но из-за больших сроков резервирования он не очень подходит для восстановления быстро меняющихся данных. Полное файловое копирование рекомендуется проводить не реже раза в неделю, а еще лучше чередовать его с другими типами файлового копирования: дифференциальным и инкрементным.
Дифференциальное резервирование
Дифференциальное резервирование предполагает копирование только тех файлов, что были изменены с последнего полного резервного копирования. Это позволяет уменьшить объем данных на резервном носителе и при необходимости ускорить процесс восстановления данных. Поскольку дифференциальное копирование обычно производится гораздо чаще, чем полное резервное копирование, оно очень эффективно, так как позволяет восстанавливать те данные, которые подверглись изменению совсем недавно, и отслеживать историю изменения файлов с момента полного копирования.
Инкрементное резервирование (Incremental backup)
Инкрементное резервирование несколько отличается от дифференциального. Оно подразумевает, что при первом запуске происходит резервное копирование только тех файлов, которые были изменены с тех пор, как в последний раз выполнялось полное или дифференциальное резервное копирование. Последующие процессы инкрементного резервирования добавляют только те файлы, которые подверглись изменению с момента предыдущей процедуры резервирования. При этом изменившиеся или новые файлы не замещают старые, а добавляются на носитель независимо. Конечно, в этом случае история изменения файлов увеличивается с каждым этапом резервирования, а процесс восстановления данных для этого типа резервирования происходит гораздо дольше, поскольку необходимо восстановить всю историю изменений файлов, шаг за шагом. Однако при дифференциальном резервировании процесс восстановления более прост: восстанавливается основная копия и в нее добавляются последние данные дифференциального резервирования.
Многие программные пакеты для резервирования используют различные виды резервирования, а зачастую совмещают их с целью большей эффективности и экономии места. Системные утилиты Windows, о которых мы расскажем в этой статье, также задействуют различные виды резервирования, что позволяет более динамично и оперативно восстанавливать данные пользователей в зависимости от ситуации. Для серверных операционных систем Windows доступно большее количество утилит для восстановления, чем для настольных операционных систем Windows, но здесь мы рассмотрим лишь те, что доступны обычным пользователям. Более того, для разных редакций ОС Windows набор компонентов различается, что обусловлено разделением операционных систем на корпоративные и домашние. Для операционных систем Windows существуют две основные утилиты по резервному копированию данных, которые различаются видом резервирования.
Windows Backup And Restore
Компонент Windows Backup And Restore (Архивация и Восстановление) стал доступен пользователям начиная с выхода операционной системы Windows Vista и отвечает за создание полного бекапа операционной системы с возможностью инкрементного резервирования. С выходом операционной системы Windows 8 этот компонент сменил название на Windows 7 File Recovery. Хотя он ничего из своего функционала и не потерял, Microsoft рекомендует использовать для резервирования данных новую утилиту File History, которая включена в операционные системы Windows 8 и Server 2012, но о ней мы расскажем чуть позже. Windows Backup And Restore позволяет создавать автоматический полный бекап на сменный носитель, оптические диски или в специальное место на удаленном сервере.
Последняя возможность доступна только для определенных редакций Windows 7/8, так как позиционируется как решение для ИT-администраторов компаний. Полный бекап системы в случае использования этого компонента предполагает не только сохранение файлов пользователей, но и возможность создания образа всей операционной системы и резервирование отдельных дисков компьютера. Для пользователя также доступно создание исключительно образа системы, который впоследствии можно не только извлечь на новый носитель этого компьютера, но и использовать как виртуальный диск в системах виртуализации. В случае применения данного компонента пользователь может задать те папки, которые необходимо резервировать, а также указать те системные диски, которые нужно сохранять при полном бекапе. При резервировании только файлов пользователя Windows Backup And Restore использует инкрементное резервирование данных, что позволяет получить большее количество слепков файлов в различные моменты времени. Обычно полное резервирование выполняется раз в неделю и предполагает не только резервирование файлов пользователя, но и создание образа системы, а также копирование данных для точек восстановления компонента Windows System Recovery. Процесс восстановления файлов пользователей может происходить прямо из-под операционной системы - он достаточно прост и понятен для большинства пользователей. Восстановление системы при серьезном сбое может быть осуществлено с помощью встроенных утилит Windows Recovery. Для этого необходимо либо создать новый специальный диск восстановления, либо использовать установочный образ операционный системы, с которого она устанавливалась на ПК ранее. При загрузке в режиме восстановления Windows Recovery предложит пользователю на выбор следующие режимы восстановления: восстановление файлов, переход к определенной точке восстановления, извлечение резервного образа системы на основной системный диск. Данные для восстановления в этом случае могут быть взяты с оптического носителя, внешнего или внутреннего накопителя, а также с сетевого хранилища данных. Редакция операционной системы в этом случае роли не играет. Увы, несмотря на то, что Windows Backup And Restore - достаточно мощный и удобный компонент операционной системы, компания Microsoft заявила, что, согласно проведенным исследованиям, этой утилитой пользуются в лучшем случае 5% пользователей. В связи с этим для более простого и эффективного резервирования данных компания Microsoft разработала для пользователей следующее поколение резервирования системы - Windows File History.
Windows File History
Windows File History, новый компонент операционных систем Windows 8 и Server 2012, в некотором роде замещает своего предшественника - Windows Backup And Restore. Он призван заменить только инкрементное файловое резервирование, в то время как создание образов системы и режим полного резервного копирования могут быть выполнены исключительно с помощью Windows 7 File Recovery. Компонент Windows File History изначально разрабатывался как удобное и практичное решение для пользователей, которым необходим прозрачный способ резервирования своих важных данных. При разработке этой утилиты особое внимание было уделено простоте инициализации процесса в сочетании с возможностью удобного и быстрого просмотра всех сохраненных данных. Процесс резервирования с помощью новой утилиты происходит незаметно для пользователя в автоматическом режиме и не требует от него дополнительных действий. Нельзя не отметить модифицирования резервирования на сетевые устройства, что позволяет легко и удобно работать с сохраненными файлами, если используются мобильные подключения или слабые каналы связи.
За основу утилиты Windows File History была взята часть базового функционала Windows Backup And Restore, в которой переделана визуальная составляющая, ответственная за представление сохраненных пользовательских данных. Просмотр ранее сохраненных данных теперь доступен из файлового менеджера Windows Explorer с помощью отдельной вкладки History. Это позволяет быстро найти необходимые файлы и восстановить их в любое место в системе. Несмотря на то что процесс резервирования основывается на инкрементном резервировании, при работе с ним не возникает мысли, что это именно резервирование, это скорее история создания, модифицирования или удаления файлов пользователей, доступная в любой момент. Такой подход к резервированию данных, безусловно, подойдет большинству неискушенных пользователей, поскольку процесс удобен и более нагляден в применении, чем работа с Windows Backup And Restore.
Для резервирования данных с помощью Windows File History можно использовать оптические носители, внешние накопители либо сетевые хранилища данных. Конечно, хранение данных на оптических носителях - это скорее дань традициям, чем реальный метод применения инкрементного резервирования, ведь данные могут меняться очень часто. Оптимальным выбором для обычных пользователей является резервирование на внешний или внутренний накопитель.
Для простоты работы в Windows 8 каждый подключаемый внешний накопитель может использоваться в качестве средства для резервирования с помощью Windows File History. Так, если накопитель подключен, в опциях выпадающего при автозапуске меню теперь присутствует отдельная вкладка, позволяющая в один клик назначить подключенный диск как накопитель для резервирования. При этом даже в том случае, если диск был впоследствии отключен от системы, резервирование данных возобновится, как только он будет установлен обратно. Аналогичный подход применяется и в случае резервирования данных на сетевое хранилище. Отключение от локальной сети никак не повлияет на работу системы, а при появлении сетевого окружения операционная система автоматически начнет новый цикл резервирования согласно расписанию. Прозрачная система активации функций Windows File History - это действительно огромный плюс для пользователя.
По умолчанию резервирование посредством утилиты Windows File History происходит каждый час, однако при необходимости пользователь может сам выбрать промежутки времени между каждым резервированием данных. Пользователю доступна возможность установить промежутки между резервированием от 10 минут до 1 дня. Для Windows File History можно установить только одно текущее место для резервирования, однако, если добавить несколько накопителей в места для резервирования, они могут использоваться попеременно в зависимости от их доступности. Это удобно в случае применения сетевого хранилища и отдельного накопителя. Таким образом, данные будут сохраняться в несколько мест в зависимости от текущей конфигурации. Также нельзя не отметить функцию выбора количества глубины сохраненных копий. Например, по прошествии одного или нескольких месяцев система может автоматически затирать старые данные, заменяя их новыми. Это позволяет экономить пространство в том месте, куда происходит резервирование данных. Кроме того, пользователь может использовать до 25% пространства накопителя для резервирования данных.
Утилита Windows File History по умолчанию резервирует наиболее активно используемые папки, а именно - «Контакты», «Избранное» и «Рабочий стол». Кроме того, резервирование автоматически применяется ко всем используемым папкам «Библиотеки». Пользователь может создавать собственные библиотеки данных, которые, по сути, являются символьными ссылками на реальные папки компьютера. То есть если пользователю необходимо резервировать конкретную папку на ПК, ему перед установкой Windows File History необходимо добавить эту папку в библиотеки. К тому же если некоторые папки нужно исключить из резервирования, то пользователь может выборочно исключить все библиотеки пользователя или же набор часто применяемых папок. С учетом активной интеграции с функцией «облачного» хранения данных Windows Skydrive использование этого «облачного» сервиса может быть нацелено на резервирование важных пользовательских данных, хранящихся в «облаке». Для того чтобы такая связка работала, необходимо лишь установить Skydrive, - после этого он автоматически добавится в библиотеки и будет резервироваться по мере необходимости. Увы, функция резервирования данных на «облако» пока недоступна пользователям, но компания Microsoft уже планирует добавить определенную возможность по резервированию данных на «облачные» хранилища данных в будущих версиях своих ОС.
Таким образом, новая система резервирования Windows File History отлично подходит для большинства пользователей. Простой и понятный интерфейс с возможностью быстрого добавления и восстановления файлов гораздо ближе к современному пользователю, чем предыдущая версия инкрементного резервирования в Windows Backup And Restore.
Резервное копирование данных - то, что должен регулярно выполнять каждый активный пользователь компьютера, который не хочет потерять всю свою информацию (или часть от нее) при неожиданном сбое. Часто в различных приложениях, предназначенных для резервного копирования информации, можно встретить три механизма, как создать копию: полностью, инкрементно или дифференциально. В рамках данной статьи рассмотрим, чем эти методы копирования отличаются друг от друга.
Оглавление:Методы резервного копирования данных
Программ, которые разработаны для создания резервной копии информации, много, как в операционной системе Windows, там и в Mac OS. Все они выполняют примерно одинаковые действия - создают резервную копию операционной системы, полностью копируют диск, его некоторые разделы, папки или прочие данные, в зависимости от настроек, выбранных пользователем. После чего эти резервные копии можно использовать для восстановления информации.
Созданная резервная копия нуждается в постоянной актуализации. На базе примененных в программе условий создания бэкапа можно выполнить создание копии, при этом выбрав механизм резервного копирования:
- Создание полной копии;
- Генерация инкрементной копии;
- Создание дифференциальной копии.
Данные действия имеются во многих приложений, например, в одной из самых популярных программ для резервного копирования данных, AOMEI Backupper. В рамках данной статьи примеры будут рассмотрены на ней, но найти подобные механизмы резервного копирования можно и в других программах.
Полное резервное копирование
При подобном методе резервного копирования снимки системы, которые генерируются в рамках одной задачи по бэкапу, способны работать независимо друг от друга. Повреждение одного из таких снимков никак не повлияет на работу других. То есть, при полном резервном копировании снимок системы содержит в себе всю резервируемую информацию.
Метод полного резервного копирования самый надежный, но и самый расточительный в плане ресурсов. Чтобы создать резервную копию операционной системы Windows и нескольких небольших приложений, потребуются десятки гигабайт. Соответственно, постоянно сохранять такие полноценные бэкапы и хранить их на жестком диске нерационально и расточительно с точки зрения свободного пространства на накопителе. Именно поэтому используются два других механизма, рассмотренных ниже.
Инкрементное резервное копирование
Инкрементное резервное копирование данных подразумевает, что пользователь при создании бэкапа единожды генерирует полноценную копию системы и всех файлов, а все создаваемые в будущем копии являются дочерними к главной и предыдущим, то есть, содержат в себе исключительно информацию о произошедших изменениях - удаленных, измененных и созданных файлах.
Таким образом, каждая последующая после первой инкрементная копия содержит в себе только информацию об изменениях. Выглядит это примерно так:
- Вторая копия. Дочерняя - содержит в себе информацию об изменении данных со времен создания первой копии;
- Третья копия. Дочерняя ко второй - содержит в себе информация об изменении данных со времен создания второй копии.
Плюс подобного метода резервного хранения данных, в сравнении с первым, меньший размер копий (каждая новая инкрементная копия весит десятки-сотни мегабайт, в зависимости от количества произошедших изменений). Минус - обращение каждой новой копии к предыдущей при восстановлении. То есть, если одна из копий повреждена, придется выполнять восстановление к последней рабочей копии в непрерывной цепи от первой. Кроме того, восстановление из инкрементной копии происходит дольше по времени, чем из других методов резервного копирования.
Дифференциальное резервное копирование
Дифференциальный метод копирования близок к инкрементному по смыслу, но между ними имеется ключевое различие. В рамках дифференциального копирования новые снимки являются дочерними к первому.
Это значит, что при первом резервном копировании дифференциальным методом создается полная копия системы, после чего все последующие снимки содержат в себе информацию о произошедших изменениях от первой копии. Выглядит это примерно следующим образом:
- Первая копия. Основная - содержит в себе всю информацию;
- Вторая копия. Дочерняя - содержит в себе сведения об изменении данных со времен создания первой копии;
- Третья копия. Дочерняя - содержит в себе сведения об изменении данных со времен создания первой копии.
Как можно видеть, третья копия при дифференциальном методе резервного копирования не является дочерней ко второй. То есть, если с одним из дифференциальных снимков возникнут проблемы, можно будет восстановиться к любой другой рабочей дифференциальной копии. Это ключевое отличие дифференциального резервного копирования от инкрементного.
Размер каждого дифференциального снимка больше, чем размер инкрементного снимка, поскольку в нем нужно хранить информацию обо всех изменениях с момента создания первой полной копии. При этом каждый новый дифференциальный снимок будет весить больше предыдущего.
Какой метод резервного копирования лучше
Рассмотрев три метода резервного копирования, каждый пользователь может самостоятельно сделать вывод, какой из вариантов для него лучше. Кратко подведем итоги и приведем несколько сценариев:
- Полное резервное копирование. Самый надежный способ. Подойдет тем пользователям, которые имеют возможность хранить большие по объему бэкапы;
- Инкрементное резервное копирование. Лучший вариант для пользователей, которые делают бэкап на диске малого объема, например, на SSD-накопителе. Преимущество этого метода, в сравнении с дифференциальным резервным копированием, только в размере каждого нового снимка системы;
- Дифференциальное резервное копирование. Лучший вариант для пользователей домашних компьютеров. При таком методе копирования озаботиться нужно только сохранностью первой копии.
Доброго времени суток, уважаемые читатели блога сайт! Бэкапы файлов данных с помощью диспетчера RMAN могут быть двух видов: либо полными резервными копиями файлов данных, либо инкрементальными. Я постараюсь описать, в чем отличие между этими видами и особенности каждого типа бэкапа.
Полные бэкапы
Полным бэкапом файла данных является резервная копия, которая включает каждый используемый блок данных в файле. Если полный бэкап файла данных создается как , содержимое целого файла воспроизводится целиком. (Если бэкап файла делается в виде набора резервирования , то неиспользуемые блоки могут пропускаться).
Инкрементальные бэкапы
Инкрементальный бэкап захватывает образы блоков файла данных, которые изменились с определенного момента в прошлом, обычно это момент предыдущего инкрементального бэкапа. Инкрементальные бэкапы всегда хранятся в виде наборов резервирования. Результирующие резервные наборы получаются как правило меньше полных бэкапов файлов данных, кроме тех случаев когда с момента последнего бэкапа изменился каждый блок данных. RMAN может создавать инкрементальные резервные копии только файлов данных, но не архивных файлов журналов или других файлов.
Плюсы инкрементального резервирования по сравнению с полным
Во время , диспетчер RMAN использует образы блоков из инкрементальных бэкапов, чтобы обновить изменившиеся блоки и привести их текущему содержиму с момента SCN, когда блок был создан, причем делается это за один шаг. Без наличия инкрементальных резервных копий, пришлось бы воспроизводить все изменения заново одно за другим из архивных журналов. Поэтому использование инкрементальных бэкапов работает гораздо быстрее, чем последовательное применение изменений, записанных в архивных журналах транзакций. Кроме того, инкрементальные бэкапы также захватывают изменения блоков данных, сделанные во время NOLOGGING операций, которые не записываются в