kancboom.ru

Что такое ОДЗ? Область допустимых значений (ОДЗ), теория, примеры, решения Найти област определения и начертить график онлайн

Как ?
Примеры решений

Если где-то нет чего-то, значит, где-то что-то есть

Продолжаем изучение раздела «Функции и графики», и следующая станция нашего путешествия – . Активное обсуждение данного понятия началось в статье о множествах и продолжилось на первом уроке о графиках функций , где я рассмотрел элементарные функции, и, в частности, их области определения. Поэтому чайникам рекомендую начать с азов темы, поскольку я не буду вновь останавливаться на некоторых базовых моментах.

Предполагается, читатель знает область определения следующих функций: линейной, квадратичной, кубической функции, многочленов, экспоненты, синуса, косинуса. Они определены на (множестве всех действительных чисел) . За тангенсы, арксинусы, так и быть, прощаю =) – более редкие графики запоминаются далеко не сразу.

Область определения – вроде бы вещь простая, и возникает закономерный вопрос, о чём же будет статья? На данном уроке я рассмотрю распространённые задачи на нахождение области определения функции. Кроме того, мы повторим неравенства с одной переменной , навыки решения которых потребуются и в других задачах высшей математики. Материал, к слову, весь школьный, поэтому будет полезен не только студентам, но и учащимся. Информация, конечно, не претендует на энциклопедичность, но зато здесь не надуманные «мёртвые» примеры, а жареные каштаны, которые взяты из настоящих практических работ.

Начнём с экспресс-вруба в тему. Коротко о главном: речь идёт о функции одной переменной . Её область определения – это множество значений «икс» , для которых существуют значения «игреков». Рассмотрим условный пример:

Область определения данной функции представляет собой объединение промежутков:
(для тех, кто позабыл: – значок объединения). Иными словами, если взять любое значение «икс» из интервала , или из , или из , то для каждого такого «икс» будет существовать значение «игрек».

Грубо говоря, где область определения – там есть график функции. А вот полуинтервал и точка «цэ» не входят в область определения и графика там нет.

Как найти область определения функции? Многие помнят детскую считалку: «камень, ножницы, бумага», и в данном случае её можно смело перефразировать: «корень, дробь и логарифм». Таким образом, если вам на жизненном пути встречается дробь, корень или логарифм, то следует сразу же очень и очень насторожиться! Намного реже встречаются тангенс, котангенс, арксинус, арккосинус, и о них мы тоже поговорим. Но сначала зарисовки из жизни муравьёв:

Область определения функции, в которой есть дробь

Предположим, дана функция, содержащая некоторую дробь . Как вы знаете, на ноль делить нельзя: , поэтому те значения «икс», которые обращают знаменатель в ноль – не входят в область определения данной функции .

Не буду останавливаться на самых простых функциях вроде и т.п., поскольку все прекрасно видят точки, которые не входят в их области определения. Рассмотрим более содержательные дроби:

Пример 1

Найти область определения функции

Решение : в числителе ничего особенного нет, а вот знаменатель должен быть ненулевым. Давайте приравняем его к нулю и попытаемся найти «плохие» точки:

Полученное уравнение имеет два корня: . Данные значения не входят в область определения функции . Действительно, подставьте или в функцию и вы увидите, что знаменатель обращается в ноль.

Ответ : область определения:

Запись читается так: «область определения – все действительные числа за исключением множества, состоящего из значений ». Напоминаю, что значок обратного слеша в математике обозначает логическое вычитание , а фигурные скобки – множество . Ответ можно равносильно записать в виде объединения трёх интервалов:

Кому как нравится.

В точках функция терпит бесконечные разрывы , а прямые, заданные уравнениями являются вертикальными асимптотами для графика данной функции. Впрочем, это уже немного другая тема, и далее я на этом не буду особо заострять внимание.

Пример 2

Найти область определения функции

Задание, по существу, устное и многие из вас практически сразу найдут область определения. Ответ в конце урока.

Всегда ли дробь будет «нехорошей»? Нет. Например, функция определена на всей числовой оси. Какое бы значение «икс» мы не взяли, знаменатель не обратится в ноль, более того, будет всегда положителен: . Таким образом, область определения данной функции: .

Все функции наподобие определены и непрерывны на .

Чуть более сложнА ситуация, когда знаменатель оккупировал квадратный трёхчлен:

Пример 3

Найти область определения функции

Решение : попытаемся найти точки, в которых знаменатель обращается в ноль. Для этого решим квадратное уравнение :

Дискриминант получился отрицательным, а значит, действительных корней нет, и наша функция определена на всей числовой оси.

Ответ : область определения:

Пример 4

Найти область определения функции

Это пример для самостоятельного решения. Решение и ответ в конце урока. Советую не лениться с простыми задачками, поскольку к дальнейшим примерам накопится недопонимание.

Область определения функции с корнем

Функция с квадратным корнем определена только при тех значениях «икс», когда подкоренное выражение неотрицательно : . Если корень расположился в знаменателе , то условие очевидным образом ужесточается: . Аналогичные выкладки справедливы для любого корня положительной чётной степени: , правда, корень уже 4-й степени в исследованиях функций не припоминаю.

Пример 5

Найти область определения функции

Решение : подкоренное выражение должно быть неотрицательным:

Прежде чем продолжить решение, напомню основные правила работы с неравенствами, известные ещё со школы.

Обращаю особое внимание! Сейчас рассматриваются неравенства с одной переменной – то есть для нас существует только одна размерность по оси . Пожалуйста, не путайте с неравенствами двух переменных , где геометрически задействована вся координатная плоскость. Однако есть и приятные совпадения! Итак, для неравенства равносильны следующие преобразования:

1) Слагаемые можно переносить из части в часть, меняя у них (слагаемых) знаки.

2) Обе части неравенства можно умножить на положительное число.

3) Если обе части неравенства умножить на отрицательное число, то необходимо сменить знак самого неравенства . Например, если было «больше», то станет «меньше»; если было «меньше либо равно», то станет «больше либо равно».

В неравенстве перенесём «тройку» в правую часть со сменой знака (правило №1):

Умножим обе части неравенства на –1 (правило №3):

Умножим обе части неравенства на (правило №2):

Ответ : область определения:

Ответ также можно записать эквивалентной фразой: «функция определена при ».
Геометрически область определения изображается штриховкой соответствующих интервалов на оси абсцисс. В данном случае:

Ещё раз напоминаю геометрический смысл области определения – график функции существует только на заштрихованном участке и отсутствует при .

В большинстве случаев годится чисто аналитическое нахождение области определения, но когда функция сильно заморочена, следует чертить ось и делать пометки.

Пример 6

Найти область определения функции

Это пример для самостоятельного решения.

Когда под квадратным корнем находится квадратный двучлен или трёхчлен, ситуация немного усложняется, и сейчас мы подробно разберём технику решения:

Пример 7

Найти область определения функции

Решение : подкоренное выражение должно быть строго положительным, то есть нам необходимо решить неравенство . На первом шаге пытаемся разложить квадратный трёхчлен на множители:

Дискриминант положителен, ищем корни:

Таким образом, парабола пересекает ось абсцисс в двух точках, а это значит, что часть параболы расположена ниже оси (неравенство ), а часть параболы – выше оси (нужное нам неравенство ).

Поскольку коэффициент , то ветви параболы смотрят вверх. Из вышесказанного следует, что на интервалах выполнено неравенство (ветки параболы уходят вверх на бесконечность), а вершина параболы расположена на промежутке ниже оси абсцисс, что соответствует неравенству :

! Примечание: если вам не до конца понятны объяснения, пожалуйста, начертите вторую ось и параболу целиком! Целесообразно вернуться к статье и методичке Горячие формулы школьного курса математики .

Обратите внимание, что сами точки выколоты (не входят в решение), поскольку неравенство у нас строгое.

Ответ : область определения:

Вообще, многие неравенства (в том числе рассмотренное) решаются универсальным методом интервалов , известным опять же из школьной программы. Но в случаях квадратных дву- и трёхчленов, на мой взгляд, гораздо удобнее и быстрее проанализировать расположение параболы относительно оси . А основной способ – метод интервалов мы детально разберём в статье Нули функции. Интервалы знакопостоянства .

Пример 8

Найти область определения функции

Это пример для самостоятельного решения. В образце подробно закомментирована логика рассуждений + второй способ решения и ещё одно важное преобразование неравенства, без знания которого студент будет хромать на одну ногу…, …хмм… на счёт ноги, пожалуй, погорячился, скорее – на один палец. Большой палец.

Может ли функция с квадратным корнем быть определена на всей числовой прямой? Конечно. Знакомые всё лица: . Или аналогичная сумма с экспонентой: . Действительно, для любых значения «икс» и «ка»: , поэтому подАвно и .

А вот менее очевидный пример: . Здесь дискриминант отрицателен (парабола не пересекает ось абсцисс), при этом ветви параболы направлены вверх, следовательно, и область определения: .

Вопрос противоположный: может ли область определения функции быть пустой ? Да, и сразу напрашивается примитивный пример , где подкоренное выражение отрицательно при любом значении «икс», и область определения: (значок пустого множества). Такая функция не определена вообще (разумеется, график тоже иллюзорен).

С нечётными корнями и т.д. всё обстоит гораздо лучше – тут подкоренное выражение может быть и отрицательным . Например, функция определена на всей числовой прямой. Однако у функции единственная точка всё же не входит в область определения, поскольку обращают знаменатель в ноль. По той же причине для функции исключаются точки .

Область определения функции с логарифмом

Третья распространённая функция – логарифм. В качестве образца я буду рисовать натуральный логарифм, который попадается примерно в 99 примерах из 100. Если некоторая функция содержит логарифм , то в её область определения должны входить только те значения «икс», которые удовлетворяют неравенству . Если логарифм находится в знаменателе: , то дополнительно накладывается условие (так как ).

Пример 9

Найти область определения функции

Решение : в соответствии с вышесказанным составим и решим систему:

Графическое решение для чайников:

Ответ : область определения:

Остановлюсь ещё на одном техническом моменте – у меня ведь не указан масштаб и не проставлены деления по оси. Возникает вопрос: как выполнять подобные чертежи в тетради на клетчатой бумаге? Отмерять ли расстояние между точками по клеточкам строго по масштабу? Каноничнее и строже, конечно, масштабировать, но вполне допустим и схематический чертёж, принципиально отражающий ситуацию.

Пример 10

Найти область определения функции

Для решения задачи можно использовать метод предыдущего параграфа – проанализировать, как парабола расположена относительно оси абсцисс. Ответ в конце урока.

Как видите, в царстве логарифмов всё очень похоже на ситуацию с квадратным корнем: функция (квадратный трёхчлен из Примера №7) определена на интервалах , а функция (квадратный двучлен из Примера №6) на интервале . Неловко уже и говорить, функции типа определены на всей числовой прямой.

Полезная информация : интересна типовая функция , она определена на всей числовой прямой кроме точки . Согласно свойству логарифма , «двойку» можно вынести множителем за пределы логарифма, но, чтобы функция не изменилась, «икс» необходимо заключить под знак модуля: . Вот вам и ещё одно «практическое применение» модуля =). Так необходимо поступать в большинстве случаев, когда вы снОсите чётную степень, например: . Если же основание степени заведомо положительно, например, , то в знаке модуля отпадает необходимость и достаточно обойтись круглыми скобками: .

Чтобы не повторяться, давайте усложним задание:

Пример 11

Найти область определения функции

Решение : в данной функции у нас присутствует и корень и логарифм.

Подкоренное выражение должно быть неотрицательным: , а выражение под знаком логарифма – строго положительным: . Таким образом, необходимо решить систему:

Многие из вас прекрасно знают или интуитивно догадываются, что решение системы должно удовлетворять каждому условию.

Исследуя расположение параболы относительно оси , приходим к выводу, что неравенству удовлетворяет интервал (синяя штриховка):

Неравенству , очевидно, соответствует «красный» полуинтервал .

Поскольку оба условия должны выполняться одновременно , то решением системы является пересечение данных интервалов. «Общие интересы» соблюдены на полуинтервале .

Ответ : область определения:

Типовое неравенство , как демонстрировалось в Примере №8, нетрудно разрешить и аналитически.

Найденная область определения не изменится для «похожих функций», например, для или . Также можно добавить какие-нибудь непрерывные на функции, например: , или так: , или даже так: . Как говорится, корень и логарифм – вещь упрямая. Единственное, если одну из функций «сбросить» в знаменатель, то область определения изменится (хотя в общем случае это не всегда справедливо). Ну а в теории матана по поводу этого словесного… ой… существуют теоремы.

Пример 12

Найти область определения функции

Это пример для самостоятельного решения. Использование чертежа вполне уместно, так как функция не самая простая.

Ещё пару примеров для закрепления материала:

Пример 13

Найти область определения функции

Решение : составим и решим систему:

Все действия уже разобраны по ходу статьи. Изобразим на числовой прямой интервал, соответствующий неравенству и, согласно второму условию, исключим две точки:

Значение оказалось вообще не при делах.

Ответ : область определения

Небольшой математический каламбур на вариацию 13-го примера:

Пример 14

Найти область определения функции

Это пример для самостоятельного решения. Кто пропустил, тот в пролёте;-)

Завершающий раздел урока посвящен более редким, но тоже «рабочим» функциям:

Области определения функций
с тангенсами, котангенсами, арксинусами, арккосинусами

Если в некоторую функцию входит , то из её области определения исключаются точки , где Z – множество целых чисел . В частности, как отмечалось в статье Графики и свойства элементарных функций , у функции выколоты следующие значения:

То есть, область определения тангенса: .

Убиваться сильно не будем:

Пример 15

Найти область определения функции

Решение : в данном случае и в область определения не войдут следующие точки:

Скинем «двойку» левой части в знаменатель правой части:

В результате :

Ответ : область определения: .

В принципе, ответ можно записать и в виде объединения бесконечного количества интервалов, но конструкция получится весьма громоздкой:

Аналитическое решение полностью согласуется с геометрическим преобразованием графика : если аргумент функции умножить на 2, то её график сожмётся к оси в два раза. Заметьте, как у функции уполовинился период, и точки разрыва участились в два раза. Тахикардия.

Похожая история с котангенсом. Если в некоторую функцию входит , то из её области определения исключаются точки . В частности, для функции автоматной очередью расстреливаем следующие значения:

Иными словами:

Шамшурин А.В. 1

Гагарина Н.А. 1

1 Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №31»

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Я начал работу с того, что в Интернете пересмотрел множество тем по математике и выбрал эту тему, потому что уверен, что важность нахождения ОДЗ играет огромную роль в решении уравнений и задач. В своей исследовательской работе я рассмотрел уравнения, в которых достаточно только нахождения ОДЗ, опасность, необязательность, ограниченность ОДЗ, некоторые запреты в математике. Самое главное для меня хорошо сдать ЕГЭ по математике, а для этого надо знать: когда, зачем и как находить ОДЗ. Это и подтолкнуло меня к исследованию темы, целью которой, стало показать, что овладение данной темой поможет учащимся правильно выполнить задания на ЕГЭ. Чтобы достичь этой цели, я исследовал дополнительную литературу и другие источники. Мне стало интересно, а знают учащиеся нашей школы: когда, зачем и как находить ОДЗ. Поэтому я провёл тест по теме «Когда, зачем и как находить ОДЗ?» (было дано 10 уравнений). Количество учащихся - 28. Справились - 14 %, опасность ОДЗ (учли) - 68 %, необязательность (учли) - 36 %.

Цель : выявление: когда, зачем и как находить ОДЗ.

Проблема: уравнения и неравенства, в которых нужно находить ОДЗ, не нашли места в курсе алгебры систематического изложения, возможно поэтому я и мои сверстники часто делаем ошибки при решении таких примеров, уделив много времени их решению, забыв при этом об ОДЗ.

Задачи:

  1. Показать значимость ОДЗ при решении уравнений и неравенств.
  2. Провести практическую работу по данной теме и подвести её итоги.

Я думаю полученные мною, знания и навыки помогут мне решить вопрос: искать ОДЗ или не надо? Я перестану делать ошибки, научившись правильно делать ОДЗ. Получится ли у меня это, покажет время, точнее ЕГЭ.

Глава 1

Что такое ОДЗ?

ОДЗ - это область допустимых значений , то есть это все значения переменной, при которых выражение имеет смысл.

Важно. Для нахождения ОДЗ мы не решаем пример! Мы решаем кусочки примера для нахождения запретных мест.

Некоторые запреты в математике. Таких запретных действий в математике очень мало. Но их не все помнят…

  • Выражения, состоящие под знаком чётной кратности или должно быть>0 или равно нулю, ОДЗ:f(x)
  • Выражение, стоящее в знаменателе дроби не может быть равно нулю, ОДЗ:f(x)
  • |f(x)|=g(x), ОДЗ: g(x) 0

Как записать ОДЗ? Очень просто. Всегда рядом с примером пишите ОДЗ. Под этими известными буквами, глядя на исходное уравнение, записываем значения х, которые разрешены для исходного примера. Преобразование примера может изменить ОДЗ и, соответственно ответ.

Алгоритм нахождения ОДЗ:

  1. Определите вид запрета.
  2. Найти значения, при которых выражение не имеет смысла.
  3. Исключить эти значения из множества действительных чисел R.

Решить уравнение: =

Без ОДЗ

С ОДЗ

Ответ: х=5

ОДЗ: => =>

Ответ: корней нет

Область допустимых значений оберегает нас от таких серьёзных ошибок. Честно говоря, именно из-за ОДЗ многие «ударники» превращаются в «троечников». Считая, что поиск и учёт ОДЗ малозначимым шагом в решении, они пропускают его, а потом удивляются: «почему учитель поставил 2?». Да потому и поставил, что ответ неверен! Это не «придирки» учителя, а вполне конкретная ошибка, такая же как неверное вычисление или потерянный знак.

Дополнительные уравнения:

а) = ; б) -42=14х+ ; в) =0; г) |x-5|=2x-2

Глава 2

ОДЗ. Зачем? Когда? Как?

Область допустимых значений - есть решение

  1. ОДЗ представляет собой пустое множество, а значит, исходный пример не имеет решений
  • = ОДЗ:

Ответ: корней нет.

  • = ОДЗ:

Ответ: корней нет.

0, уравнение не имеет корней

Ответ: корней нет.

Дополнительные примеры:

а) + =5; б) + =23х-18; в) =0.

  1. В ОДЗ находится одно или несколько чисел, и несложная подстановка быстро определяет корни.

ОДЗ: х=2, х=3

Проверка: х=2, + , 0<1, верно

Проверка: х=3, + , 0<1, верно.

Ответ: х=2, х=3.

  • > ОДЗ: х=1,х=0

Проверка: х=0, > , 0>0, неверно

Проверка: х=1, > , 1>0, верно

Ответ: х=1.

  • + =х ОДЗ: х=3

Проверка: + =3, 0=3, неверно.

Ответ: корней нет.

Дополнительные примеры:

а) = ; б) + =0; в) + =х -1

Опасность ОДЗ

Заметим, тождественные преобразования могут:

  • не влиять на ОДЗ;
  • приводить к расширенному ОДЗ;
  • приводить к сужению ОДЗ.

Известно также, что в результате некоторых преобразований, изменяющих исходное ОДЗ, может привести к неверным решениям.

Давайте поясним каждый случай примером.

1) Рассмотрим выражение х +4х+7х, ОДЗ переменной х для этого есть множество R. Приведём подобные слагаемые. В результате оно примет вид x 2 +11x. Очевидно, ОДЗ переменной x этого выражения тоже является множество R. Таким образом, проведенное преобразование не изменило ОДЗ.

2) Возьмем уравнение x+ - =0. В этом случае ОДЗ: x≠0. Это выражение тоже содержит подобные слагаемые, после приведения которых, приходим к выражению x, для которого ОДЗ есть R. Что мы видим: в результате проведенного преобразования произошло расширение ОДЗ (к ОДЗ переменной x для исходного выражения добавилось число нуль).

3) Возьмем выражение. ОДЗ переменной x определяется неравенством (x−5)·(x−2)≥0, ОДЗ: (−∞, 2]∪∪/Режим доступа: Материалы сайтов www.fipi.ru, www.eg

  • Область допустимых значений - есть решение [Электронный ресурс]/Режим доступа: rudocs.exdat.com›docs/index-16853.html
  • ОДЗ - область допустимых значений, как найти ОДЗ [Электронный ресурс]/Режим доступа: cleverstudents.ru›expressions/odz.html
  • Область допустимых значений: теория и практика [Электронный ресурс]/Режим доступа: pandia.ru›text/78/083/13650.php
  • Что такое ОДЗ [Электронный ресурс]/ Режим доступа: www.cleverstudents.ru›odz.html
  • Что такое ОДЗ и как его искать - объяснение и пример. Электронный ресурс]/ Режим доступа: cos-cos.ru›math/82/
  • Приложение 1

    Практическая работа «ОДЗ: когда, зачем и как?»

    Вариант 1

    Вариант 2

    │х+14│= 2 - 2х

    │3-х│=1 - 3х

    Приложение 2

    Ответы к заданиям практической работы «ОДЗ: когда, зачем и как?»

    Вариант 1

    Вариант 2

    Ответ: корней нет

    Ответ: х-любое число, кроме х=5

    9х+ = +27 ОДЗ: х≠3

    Ответ: корней нет

    ОДЗ: х=-3, х=5. Ответ:-3;5.

    у= -убывает,

    у= -возрастает

    Значит, уравнение имеет не более одного корня. Ответ: х=6.

    ОДЗ: → →х≥5

    Ответ:х≥5, х≤-6.

    │х+14│=2-2х ОДЗ:2-2х≥0, х≤1

    х=-4, х=16, 16 не принадлежит ОДЗ

    Убывает, -возрастает

    Уравнение имеет не более одного корня. Ответ: корней нет.

    0, ОДЗ: х≥3,х≤2

    Ответ: х≥3,х≤2

    8х+ = -32, ОДЗ: х≠-4.

    Ответ: корней нет.

    х=7, х=1. Ответ: решений нет

    Возрастает, - убывает

    Ответ: х=2.

    0 ОДЗ: х≠15

    Ответ: х- любое число, кроме х=15.

    │3-х│=1-3х, ОДЗ: 1-3х≥0, х≤

    х=-1, х=1 не принадлежит ОДЗ.

    Ответ: х=-1.

    Тип задания: 13

    Условие

    а) Решите уравнение 2(\sin x-\cos x)=tgx-1.

    б) \left[ \frac{3\pi }2;\,3\pi \right].

    Показать решение

    Решение

    а) Раскрыв скобки и перенеся все слагаемые в левую часть, получим уравнение 1+2 \sin x-2 \cos x-tg x=0. Учитывая, что \cos x \neq 0, слагаемое 2 \sin x можно заменить на 2 tg x \cos x, получим уравнение 1+2 tg x \cos x-2 \cos x-tg x=0, которое способом группировки можно привести к виду (1-tg x)(1-2 \cos x)=0.

    1) 1-tg x=0, tg x=1, x=\frac\pi 4+\pi n, n \in \mathbb Z;

    2) 1-2 \cos x=0, \cos x=\frac12, x=\pm \frac\pi 3+2\pi n, n \in \mathbb Z.

    б) С помощью числовой окружности отберём корни, принадлежащие промежутку \left[ \frac{3\pi }2;\, 3\pi \right].

    x_1=\frac\pi 4+2\pi =\frac{9\pi }4,

    x_2=\frac\pi 3+2\pi =\frac{7\pi }3,

    x_3=-\frac\pi 3+2\pi =\frac{5\pi }3.

    Ответ

    а) \frac\pi 4+\pi n, \pm\frac\pi 3+2\pi n, n \in \mathbb Z;

    б) \frac{5\pi }3, \frac{7\pi }3, \frac{9\pi }4.

    Тип задания: 13
    Тема: Область допустимых значений (ОДЗ)

    Условие

    а) Решите уравнение (2\sin ^24x-3\cos 4x)\cdot \sqrt {tgx}=0.

    б) Укажите корни этого уравнения, принадлежащие промежутку \left(0;\,\frac{3\pi }2\right] ;

    Показать решение

    Решение

    а) ОДЗ: \begin{cases} tgx\geqslant 0\\x\neq \frac\pi 2+\pi k,k \in \mathbb Z. \end{cases}

    Исходное уравнение на ОДЗ равносильно совокупности уравнений

    \left[\!\!\begin{array}{l} 2 \sin ^2 4x-3 \cos 4x=0,\\tg x=0. \end{array}\right.

    Решим первое уравнение. Для этого сделаем замену \cos 4x=t, t \in [-1; 1]. Тогда \sin^24x=1-t^2. Получим:

    2(1-t^2)-3t=0,

    2t^2+3t-2=0,

    t_1=\frac12, t_2=-2, t_2\notin [-1; 1].

    \cos 4x=\frac12,

    4x=\pm \frac\pi 3+2\pi n,

    x=\pm \frac\pi {12}+\frac{\pi n}2, n \in \mathbb Z.

    Решим второе уравнение.

    tg x=0,\, x=\pi k, k \in \mathbb Z.

    При помощи единичной окружности найдём решения, которые удовлетворяют ОДЗ.

    Знаком «+» отмечены 1 -я и 3 -я четверти, в которых tg x>0.

    Получим: x=\pi k, k \in \mathbb Z; x=\frac\pi {12}+\pi n, n \in \mathbb Z; x=\frac{5\pi }{12}+\pi m, m \in \mathbb Z.

    б) Найдём корни, принадлежащие промежутку \left(0;\,\frac{3\pi }2\right].

    x=\frac\pi {12}, x=\frac{5\pi }{12}; x=\pi ; x=\frac{13\pi }{12}; x=\frac{17\pi }{12}.

    Ответ

    а) \pi k, k \in \mathbb Z; \frac\pi {12}+\pi n, n \in \mathbb Z; \frac{5\pi }{12}+\pi m, m \in \mathbb Z.

    б) \pi; \frac\pi {12}; \frac{5\pi }{12}; \frac{13\pi }{12}; \frac{17\pi }{12}.

    Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

    Тип задания: 13
    Тема: Область допустимых значений (ОДЗ)

    Условие

    а) Решите уравнение: \cos ^2x+\cos ^2\frac\pi 6=\cos ^22x+\sin ^2\frac\pi 3;

    б) Укажите все корни, принадлежащие промежутку \left(\frac{7\pi }2;\,\frac{9\pi }2\right].

    Показать решение

    Решение

    а) Так как \sin \frac\pi 3=\cos \frac\pi 6, то \sin ^2\frac\pi 3=\cos ^2\frac\pi 6, значит, заданное уравнение равносильно уравнению \cos^2x=\cos ^22x, которое, в свою очередь, равносильно уравнению \cos^2x-\cos ^2 2x=0.

    Но \cos ^2x-\cos ^22x= (\cos x-\cos 2x)\cdot (\cos x+\cos 2x) и

    \cos 2x=2 \cos ^2 x-1, поэтому уравнение примет вид

    (\cos x-(2 \cos ^2 x-1))\,\cdot (\cos x+(2 \cos ^2 x-1))=0,

    (2 \cos ^2 x-\cos x-1)\,\cdot (2 \cos ^2 x+\cos x-1)=0.

    Тогда либо 2 \cos ^2 x-\cos x-1=0, либо 2 \cos ^2 x+\cos x-1=0.

    Решая первое уравнение как квадратное уравнение относительно \cos x, получаем:

    (\cos x)_{1,2}=\frac{1\pm\sqrt 9}4=\frac{1\pm3}4. Поэтому либо \cos x=1, либо \cos x=-\frac12. Если \cos x=1, то x=2k\pi , k \in \mathbb Z. Если \cos x=-\frac12, то x=\pm \frac{2\pi }3+2s\pi , s \in \mathbb Z.

    Аналогично, решая второе уравнение, получаем либо \cos x=-1, либо \cos x=\frac12. Если \cos x=-1, то корни x=\pi +2m\pi , m \in \mathbb Z. Если \cos x=\frac12, то x=\pm \frac\pi 3+2n\pi , n \in \mathbb Z.

    Объединим полученные решения:

    x=m\pi , m \in \mathbb Z; x=\pm \frac\pi 3 +s\pi , s \in \mathbb Z.

    б) Выберем корни, которые попали в заданный промежуток, с помощью числовой окружности.

    Получим: x_1 =\frac{11\pi }3, x_2=4\pi , x_3 =\frac{13\pi }3.

    Ответ

    а) m\pi, m \in \mathbb Z; \pm \frac\pi 3 +s\pi , s \in \mathbb Z;

    б) \frac{11\pi }3, 4\pi , \frac{13\pi }3.

    Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

    Тип задания: 13
    Тема: Область допустимых значений (ОДЗ)

    Условие

    а) Решите уравнение 10\cos ^2\frac x2=\frac{11+5ctg\left(\dfrac{3\pi }2-x\right) }{1+tgx}.

    б) Укажите корни этого уравнения, принадлежащие интервалу \left(-2\pi ; -\frac{3\pi }2\right).

    Показать решение

    Решение

    а) 1. Согласно формуле приведения, ctg\left(\frac{3\pi }2-x\right) =tgx. Областью определения уравнения будут такие значения x , что \cos x \neq 0 и tg x \neq -1. Преобразуем уравнение, пользуясь формулой косинуса двойного угла 2 \cos ^2 \frac x2=1+\cos x. Получим уравнение: 5(1+\cos x) =\frac{11+5tgx}{1+tgx}.

    Заметим, что \frac{11+5tgx}{1+tgx}= \frac{5(1+tgx)+6}{1+tgx}= 5+\frac{6}{1+tgx}, поэтому уравнение принимает вид: 5+5 \cos x=5 +\frac{6}{1+tgx}. Отсюда \cos x =\frac{\dfrac65}{1+tgx}, \cos x+\sin x =\frac65.

    2. Преобразуем \sin x+\cos x по формуле приведения и формуле суммы косинусов: \sin x=\cos \left(\frac\pi 2-x\right), \cos x+\sin x= \cos x+\cos \left(\frac\pi 2-x\right)= 2\cos \frac\pi 4\cos \left(x-\frac\pi 4\right)= \sqrt 2\cos \left(x-\frac\pi 4\right) = \frac65.

    Отсюда \cos \left(x-\frac\pi 4\right) =\frac{3\sqrt 2}5. Значит, x-\frac\pi 4= arc\cos \frac{3\sqrt 2}5+2\pi k, k \in \mathbb Z,

    или x-\frac\pi 4= -arc\cos \frac{3\sqrt 2}5+2\pi t, t \in \mathbb Z.

    Поэтому x=\frac\pi 4+arc\cos \frac{3\sqrt 2}5+2\pi k,k \in \mathbb Z,

    или x =\frac\pi 4-arc\cos \frac{3\sqrt 2}5+2\pi t,t \in \mathbb Z.

    Найденные значения x принадлежат области определения.

    б) Выясним сначала куда попадают корни уравнения при k=0 и t=0. Это будут соответственно числа a=\frac\pi 4+arccos \frac{3\sqrt 2}5 и b=\frac\pi 4-arccos \frac{3\sqrt 2}5.

    1. Докажем вспомогательное неравенство:

    \frac{\sqrt 2}{2}<\frac{3\sqrt 2}2<1.

    Действительно, \frac{\sqrt 2}{2}=\frac{5\sqrt 2}{10}<\frac{6\sqrt2}{10}=\frac{3\sqrt2}{5}.

    Заметим также, что \left(\frac{3\sqrt 2}5\right) ^2=\frac{18}{25}<1^2=1, значит \frac{3\sqrt 2}5<1.

    2. Из неравенств (1) по свойству арккосинуса получаем:

    arccos 1

    0

    Отсюда \frac\pi 4+0<\frac\pi 4+arc\cos \frac{3\sqrt 2}5<\frac\pi 4+\frac\pi 4,

    0<\frac\pi 4+arccos \frac{3\sqrt 2}5<\frac\pi 2,

    0

    Аналогично, -\frac\pi 4

    0=\frac\pi 4-\frac\pi 4<\frac\pi 4-arccos \frac{3\sqrt 2}5< \frac\pi 4<\frac\pi 2,

    0

    При k=-1 и t=-1 получаем корни уравнения a-2\pi и b-2\pi.

    \Bigg(a-2\pi =-\frac74\pi +arccos \frac{3\sqrt 2}5,\, b-2\pi =-\frac74\pi -arccos \frac{3\sqrt 2}5\Bigg). При этом -2\pi

    2\pi Значит, эти корни принадлежат заданному промежутку \left(-2\pi , -\frac{3\pi }2\right).

    При остальных значениях k и t корни уравнения не принадлежат заданному промежутку.

    Действительно, если k\geqslant 1 и t\geqslant 1, то корни больше 2\pi. Если k\leqslant -2 и t\leqslant -2, то корни меньше -\frac{7\pi }2.

    Ответ

    а) \frac\pi4\pm arccos\frac{3\sqrt2}5+2\pi k, k\in\mathbb Z;

    б) -\frac{7\pi}4\pm arccos\frac{3\sqrt2}5.

    Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

    Тип задания: 13
    Тема: Область допустимых значений (ОДЗ)

    Условие

    а) Решите уравнение \sin \left(\frac\pi 2+x\right) =\sin (-2x).

    б) Найдите все корни этого уравнения, принадлежащие промежутку ;

    Показать решение

    Решение

    а) Преобразуем уравнение:

    \cos x =-\sin 2x,

    \cos x+2 \sin x \cos x=0,

    \cos x(1+2 \sin x)=0,

    \cos x=0,

    x =\frac\pi 2+\pi n, n \in \mathbb Z;

    1+2 \sin x=0,

    \sin x=-\frac12,

    x=(-1)^{k+1}\cdot \frac\pi 6+\pi k, k \in \mathbb Z.

    б) Корни, принадлежащие отрезку , найдём с помощью единичной окружности.

    Указанному промежутку принадлежит единственное число \frac\pi 2.

    Ответ

    а) \frac\pi 2+\pi n, n \in \mathbb Z; (-1)^{k+1}\cdot \frac\pi 6+\pi k, k \in \mathbb Z;

    б) \frac\pi 2.

    Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

    Тип задания: 13
    Тема: Область допустимых значений (ОДЗ)

    Условие

    а) Решите уравнение \frac{\sin x-1}{1+\cos 2x}=\frac{\sin x-1}{1+\cos (\pi +x)}.

    б) Найдите все корни этого уравнения, принадлежащие отрезку \left[ -\frac{3\pi }{2}; -\frac{\pi }2 \right].

    Показать решение

    Решение

    а) Найдём ОДЗ уравнения: \cos 2x \neq -1, \cos (\pi +x) \neq -1; Отсюда ОДЗ: x \neq \frac \pi 2+\pi k,

    k \in \mathbb Z, x \neq 2\pi n, n \in \mathbb Z. Заметим, что при \sin x=1, x=\frac \pi 2+2\pi k, k \in \mathbb Z.

    Полученное множество значений x не входит в ОДЗ.

    Значит, \sin x \neq 1.

    Разделим обе части уравнения на множитель (\sin x-1), отличный от нуля. Получим уравнение \frac 1{1+\cos 2x}=\frac 1{1+\cos (\pi +x)}, или уравнение 1+\cos 2x=1+\cos (\pi +x). Применяя в левой части формулу понижения степени, а в правой — формулу приведения, получим уравнение 2 \cos ^2 x=1-\cos x. Это уравнение с помощью замены \cos x=t, где -1 \leqslant t \leqslant 1 сводим к квадратному: 2t^2+t-1=0, корни которого t_1=-1 и t_2=\frac12. Возвращаясь к переменной x , получим \cos x = \frac12 или \cos x=-1, откуда x=\frac \pi 3+2\pi m, m \in \mathbb Z, x=-\frac \pi 3+2\pi n, n \in \mathbb Z, x=\pi +2\pi k, k \in \mathbb Z.

    б) Решим неравенства

    1) -\frac{3\pi }2 \leqslant \frac{\pi }3+2\pi m \leqslant -\frac \pi 2 ,

    2) -\frac{3\pi }2 \leqslant -\frac \pi 3+2\pi n \leqslant -\frac \pi {2,}

    3) -\frac{3\pi }2 \leqslant \pi+2\pi k \leqslant -\frac \pi 2 , m, n, k \in \mathbb Z.

    1) -\frac{3\pi }2 \leqslant \frac{\pi }3+2\pi m \leqslant -\frac \pi 2 , -\frac32 \leqslant \frac13+2m \leqslant -\frac12 -\frac{11}6 \leqslant 2m \leqslant -\frac56 , -\frac{11}{12} \leqslant m \leqslant -\frac5{12}.

    \left [-\frac{11}{12};-\frac5{12}\right] .

    2) -\frac {3\pi} 2 \leqslant -\frac{\pi }3+2\pi n \leqslant -\frac{\pi }{2}, -\frac32 \leqslant -\frac13 +2n \leqslant -\frac12 , -\frac76 \leqslant 2n \leqslant -\frac1{6}, -\frac7{12} \leqslant n \leqslant -\frac1{12}.

    Нет целых чисел, принадлежащих промежутку \left[ -\frac7{12} ; -\frac1{12} \right].

    3) -\frac{3\pi }2 \leqslant \pi +2\pi k\leqslant -\frac{\pi }2, -\frac32 \leqslant 1+2k\leqslant -\frac12, -\frac52 \leqslant 2k \leqslant -\frac32, -\frac54 \leqslant k \leqslant -\frac34.

    Этому неравенству удовлетворяет k=-1, тогда x=-\pi.

    Ответ

    а) \frac \pi 3+2\pi m; -\frac \pi 3+2\pi n; \pi +2\pi k, m, n, k \in \mathbb Z;

    б) -\pi .

    Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

    (\sin x-\cos 2x)\cdot (\sin x+\cos 2x) и

    \cos 2x=1-2 \sin ^2 x, поэтому уравнение примет вид

    (\sin x-(1-2 \sin ^2 x))\,\cdot (\sin x+(1-2 \sin ^2 x))=0,

    (2 \sin ^2 x+\sin x-1)\,\cdot (2 \sin ^2 x-\sin x-1)=0.

    Тогда либо 2 \sin ^2 x+\sin x-1=0, либо 2 \sin ^2 x-\sin x-1=0.

    Решим первое уравнение как квадратное относительно \sin x,

    (\sin x)_{1,2}=\frac{-1 \pm \sqrt 9}4=\frac{-1 \pm 3}4. Поэтому либо \sin x=-1, либо \sin x=\frac12. Если \sin x=-1, то x=\frac{3\pi }2+ 2k\pi , k \in \mathbb Z. Если \sin x=\frac12, то либо x=\frac\pi 6 +2s\pi , s \in \mathbb Z, либо x=\frac{5\pi }6+2t\pi , t \in \mathbb Z.

    Аналогично, решая второе уравнение, получаем либо \sin x=1, либо \sin x=-\frac12. Тогда x =\frac\pi 2+2m\pi , m \in \mathbb Z, либо x=\frac{-\pi }6 +2n\pi , n \in \mathbb Z, либо x=\frac{-5\pi }6+2p\pi , p \in \mathbb Z.

    Объединим полученные решения:

    x=\frac\pi 2+m\pi,m\in\mathbb Z; x=\pm\frac\pi 6+s\pi,s \in \mathbb Z.

    б) Выберем корни, которые попали в заданный промежуток с помощью числовой окружности.

    Получим: x_1 =\frac{7\pi }2, x_2 =\frac{23\pi }6, x_3 =\frac{25\pi }6.

    Ответ

    а) \frac\pi 2+ m\pi , m \in \mathbb Z; \pm \frac\pi 6 +s\pi , s \in \mathbb Z;

    б) \frac{7\pi }2;\,\,\frac{23\pi }6;\,\,\frac{25\pi }6.

    Научный руководитель:

    1. Введение 3

    2. Исторический очерк 4

    3. «Место» ОДЗ при решении уравнений и неравенств 5-6

    4. Особенности и опасность ОДЗ 7

    5. ОДЗ – есть решение 8-9

    6. Нахождение ОДЗ – лишняя работа. Равносильность переходов 10-14

    7. ОДЗ в ЕГЭ 15-16

    8. Заключение 17

    9. Литература 18

    1. Введение

    Проблема: уравнения и неравенства, в которых нужно находить ОДЗ, не нашли места в курсе алгебры систематического изложения, возможно поэтому я и мои сверстники часто делаем ошибки при решении таких примеров, уделив много времени их решению, забыв при этом об ОДЗ.

    Цель: уметь анализировать ситуацию и делать логически корректные выводы в примерах, где нужно учесть ОДЗ.

    Задачи:

    1. Изучить теоретический материал;

    2. Прорешать множество уравнений, неравенств: а) дробно-рациональных; б) иррациональных; в) логарифмических; г) содержащих обратные тригонометрические функции;

    3. Применить изученные материалы в ситуации, которая отличается от стандартной;

    4. Создать работу по теме «Область допустимых значений: теория и практика»

    Работа над проектом: работу над проектом я начала с повторения известных мне функций. Область определения многих из них имеет ограничения.

    ОДЗ встречается:

    1. При решении дробно-рациональных уравнений и неравенств

    2. При решении иррациональных уравнений и неравенств

    3. При решении логарифмических уравнений и неравенств

    4. При решении уравнений и неравенств, содержащих обратные тригонометрические функции

    Прорешав множество примеров из различных источников (пособий по ЕГЭ, учебников, справочников), я систематизировала решение примеров по следующим принципам:

    · можно решить пример и учесть ОДЗ (самый распространённый способ)

    · можно решить пример, не учитывая ОДЗ

    · можно только учитывая ОДЗ прийти к правильному решению.

    Методы, использованные в работе: 1) анализ; 2) статистический анализ; 3) дедукция; 4) классификация; 5) прогнозирование.

    Изучила анализ результатов ЕГЭ за прошедшие годы. Много ошибок было допущено в примерах, в которых нужно учитывать ОДЗ. Это ещё раз подчёркивает актуальность моей темы.

    2. Исторический очерк

    Как и остальные понятия математики, понятие функции сложилось не сразу, а прошло долгий путь развития. В работе П. Ферма «Введение и изучение плоских и телесных мест» (1636, опубл. 1679) говорится: «Всякий раз, когда в заключительном уравнении имеются две неизвестные величины, налицо имеется место». По существу здесь идёт речь о функциональной зависимости и её графическом изображении («место» у Ферма означает линию). Изучение линий по их уравнениям в «Геометрии» Р. Декарта (1637) также указывает на ясное представление о взаимной зависимости двух переменных величин. У И. Барроу («Лекции по геометрии», 1670) в геометрической форме устанавливается взаимная обратность действий дифференцирования и интегрирования (разумеется, без употребления самих этих терминов). Это свидетельствует уже о совершенно отчётливом владении понятием функции. В геометрическом и механическом виде это понятие мы находим и у И. Ньютона. Однако термин «функция» впервые появляется лишь в 1692 у Г. Лейбница и притом не совсем в современном его понимании. Г. Лейбниц называет функцией различные отрезки, связанные с какой-либо кривой (например, абсциссы её точек). В первом печатном курсе «Анализа бесконечно малых для познания кривых линий» Лопиталя (1696) термин «функция» не употребляется.

    Первое определение функции в смысле, близком к современному, встречается у И. Бернулли (1718): «Функция - это величина, составленная из переменной и постоянной». В основе этого не вполне отчётливого определения лежит идея задания функции аналитической формулой. Та же идея выступает и в определении Л. Эйлера, данном им во «Введении в анализ бесконечных» (1748): «Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств». Впрочем, уже Л. Эйлеру не чуждо и современное понимание функции, которое не связывает понятие функции с каким-либо аналитическим её выражением. В его «Дифференциальном исчислении» (1755) говорится: «Когда некоторые количества зависят от других таким образом, что при изменении последних и сами они подвергаются изменению, то первые называют функциями вторых».

    С начала XIX века уже всё чаще и чаще определяют понятие функции без упоминания об её аналитическом изображении. В «Трактате по дифференциальному и интегральному исчислению» (1797-1802) С. Лакруа говорится: «Всякая величина, значение которой зависит от одной или многих других величин, называется функцией этих последних». В «Аналитической теории тепла» Ж. Фурье (1822) имеется фраза: «Функция f(x) обозначает функцию совершенно произвольную, то есть последовательность данных значений, подчинённых или нет общему закону и соответствующих всем значениям x , содержащимся между 0 и какой-либо величиной x ». Близко к современному и определение Н. И. Лобачевского: «…Общее понятие функции требует, чтобы функцией от x называть число, которое даётся для каждого x и вместе с x постепенно изменяется. Значение функции может быть дано или аналитическим выражением, или условием, которое подаёт средство испытывать все числа и выбирать одно из них, или, наконец, зависимость может существовать и оставаться неизвестной». Там же немного ниже сказано: «Обширный взгляд теории допускает существование зависимости только в том смысле, чтобы числа одни с другими в связи понимать как бы данными вместе». Таким образом, современное определение функции, свободное от упоминаний об аналитическом задании, обычно приписываемое П. Дирихле (1837), неоднократно предлагалось и до него.

    Областью определения (допустимых значений) функции у называется совокупность значений независимой переменной х, при которых эта функция определена, т. е. область изменения независимой переменной (аргумента).

    3. «Место» области допустимых значений при решении уравнений и неравенств

    1. При решении дробно-рациональных уравнений и неравенств знаменатель не должен равняться нулю.

    2. Решение иррациональных уравнений и неравенств.

    2.1..gif" width="212" height="51"> .

    В данном случае нет необходимости находить ОДЗ: из первого уравнения следует, что при полученных значения х выполняется неравенство: https://pandia.ru/text/78/083/images/image004_33.gif" width="107" height="27 src="> является система:

    Поскольку в уравнение и входят равноправно, то вместо неравенства , можно включить неравенство https://pandia.ru/text/78/083/images/image009_18.gif" width="220" height="49">

    https://pandia.ru/text/78/083/images/image014_11.gif" width="239" height="51">

    3. Решение логарифмических уравнений и неравенств.

    3.1. Схема решения логарифмического уравнения

    Но проверить достаточно только одно условие ОДЗ.

    3.2..gif" width="115" height="48 src=">.gif" width="115" height="48 src=">

    4. Тригонометрические уравнения вида равносильны системе (вместо неравенства в систему можно включить неравенство https://pandia.ru/text/78/083/images/image024_5.gif" width="377" height="23"> равносильны уравнению

    4. Особенности и опасность области допустимых значений

    На уроках математики от нас требуют нахождения ОДЗ в каждом примере. В то же время по математической сути дела нахождение ОДЗ вовсе не является обязательным, часто не нужно, а иногда и невозможно - и все это без какого бы то ни бы­ло ущерба для решения примера. С другой стороны, часто случается такое, что решив пример, школьники забывают учесть ОДЗ, записывают её как конечный ответ, учитывают лишь некоторые условия. Обстоятельство это хорошо из­вестно, но «война» продолжается каждый год и, похоже, будет идти еще долго.

    Рассмотрим, к примеру, такое неравенство:

    Здесь ищется ОДЗ, и неравенство решается. Однако при реше­нии этого неравенства школьники иногда считают, что вполне можно обойтись без поиска ОДЗ, точнее, можно обойтись и без условия

    В самом деле, для получения верного ответа необходимо учесть и неравенство , и .

    А вот, например, решение уравнения: https://pandia.ru/text/78/083/images/image032_4.gif" width="79 height=75" height="75">

    что равносильно работе с ОДЗ. Однако и в этом примере такая работа излишняя - достаточно проверить выполнение только двух из этих неравенств, причем любых двух.

    Напомню, что всякое уравнение (неравенство) может быть сведено к виду . ОДЗ - это просто область определения функции в левой части. То, что за этой об­ластью надо следить, вытекает уже из определения корня как числа из области определения данной функции, тем самым - из ОДЗ. Вот забавный пример на эту тему..gif" width="20" height="21 src="> имеет областью опреде­ления множество положительных чисел (это, конечно, договоренность - рассматривать функцию при, , но разум­ная), а тогда -1 не является корнем.

    5. Область допустимых значений – есть решение

    И наконец, в массе примеров нахождение ОДЗ позволяет получить ответ без громоздких выкладок, а то и вовсе устно.

    1. ОД3 представляет собой пустое множество, а значит, исход­ный пример не имеет решений.

    1) 2) 3)

    2. В ОДЗ находится одно или несколько чисел, и несложная подстановка быстро определяет корни.

    1) , х=3

    2) Здесь в ОДЗ находится только число 1, и после подстановки видно, что оно не является корнем.

    3) В ОДЗ находятся два числа: 2 и 3, и оба подходят.

    4) > В ОДЗ находятся два числа 0 и 1, и подходит только 1.

    Эффективно может использоваться ОДЗ в сочетании с анали­зом самого выражения.

    5) < ОДЗ: Но в правой части неравенства могут быть только положительные числа, поэтому оставляем х=2. Тогда в неравенство подставим 2.

    6) Из ОДЗ следует, что, откуда имеем ..gif" width="143" height="24"> Из ОДЗ имеем: . Но тогда и . Так как, то решений нет.

    Из ОДЗ имеем:https://pandia.ru/text/78/083/images/image060_0.gif" width="48" height="24">>, а значит, . Решая по­следнее неравенство, получим х<- 4, что не входит в ОДЗ. По­этому решения нет.

    3) ОДЗ: . Так как, то

    С другой стороны,https://pandia.ru/text/78/083/images/image068_0.gif" width="160" height="24">

    ОДЗ:. Рассмотрим уравнение на промежутке [-1; 0).

    На нем выполняются такие неравенства https://pandia.ru/text/78/083/images/image071_0.gif" width="68" height="24 src=">.gif" width="123" height="24 src="> и решений нет. При функции и https://pandia.ru/text/78/083/images/image076_0.gif" width="179" height="25">. ОДЗ: х>2..gif" width="233" height="45 src="> Найдём ОДЗ:

    Целочисленное решение возможно лишь при х=3 и х=5. Проверкой находим, что корень х=3 не подходит, а значит ответ: х=5.

    6. Нахождение области допустимых значений – лишняя работа. Равносильность переходов.

    Можно привести примеры, где ситуация ясна и без нахож­дения ОДЗ.

    1.

    Равенство невозможно, ибо при вычитании из меньшего выраже­ния большее должно получатся отрицательное число.

    2. .

    Сумма двух неотрицательных функций не может быть отрицатель­ной.

    Приведу также примеры, где нахождение ОДЗ затруднено, а иногда просто невозможно.

    И, наконец, поиски ОДЗ являются очень часто просто лишней работой, без которой прекрасно можно обойтись, доказав тем са­мым понимание происходящего. Тут можно привести громадное число примеров, поэтому я выберу только наиболее типичные. Главным приемом решения являются в этом случае равносиль­ные преобразования при переходе от одного уравнения (нера­венства, системы) к другому.

    1.. ОДЗ не нужна, ибо, найдя те значения х, при которых х2=1, мы не можем получить х=0.

    2. . ОДЗ не нужна, ибо мы выясняем, когда выполняется равенство подкоренного выражения положи­тельному числу.

    3. . ОДЗ не нужна по тем же сооб­ражениям, что и в предыдущем примере.

    4.

    ОДЗ не нуж­на, ибо подкоренное выражение равно квадрату некоторой функ­ции, а потому не может быть отрицательным.

    5.

    6. ..gif" width="271" height="51"> Для решения до­статочно только одного ограничения для подкоренного выражения. В самом деле, из записанной смешанной системы следует, что и другое подкоренное выражение неотрицательно.

    8. ОДЗ не нужна по тем же соображениям, что и в предыдущем примере.

    9. ОДЗ не нужна, так как достаточно, чтобы были положительны два из трех выражений под знаками логарифма, чтобы обеспечить положительность третьего.

    10. .gif" width="357" height="51"> ОДЗ не нужна по тем же соображениям, что и в предыдущем примере.

    Стоит, однако, заметить, что при решении способом равно­сильных преобразований помогает знание ОДЗ (и свойств функ­ций).

    Вот несколько примеров.

    1. . ОД3 , откуда следует положительность выражения в правой части, и возможно записать уравнение, рав­носильное данному, в таком виде https://pandia.ru/text/78/083/images/image101_0.gif" width="112" height="27"> ОДЗ: . Но тогда , и при решении этого неравенства не надо рассматривать случай, когда правая часть меньше 0.

    3. . Из ОДЗ следует, что , а потому случай, когда https://pandia.ru/text/78/083/images/image106_0.gif" width="303" height="48"> Переход в общем виде выглядит так:

    https://pandia.ru/text/78/083/images/image108_0.gif" width="303" height="24">

    Возможны два случая: 0>1.

    Значит, исходное неравенство равносильно следующей совокупности систем неравенств:

    Первая система не имеет решений, а из второй получаем: x<-1 – решение неравенства.

    Понимание условий равносильности требует знания некоторых тонкостей. Например, почему равносильны такие уравнения:

    Или

    И наконец, возможно, самое существенное. Дело в том, что равносильность гарантирует правильность ответа, если совер­шаются какие-то преобразования самого уравнения, но не исполь­зуется при преобразованиях только в одной из частей. Сокращение, использование различных формул в одной из частей не попадают под действие теорем о равносильности. Некоторые примеры такого вида я уже приводила. Рассмотрим еще примеры.

    1. Такое решение естественно. В ле­вой части по свойству логарифмической функции перейдём к выражению ..gif" width="111" height="48">

    Решив эту систему, мы получим результат (-2 и 2), который, однако, не является ответом, так как число -2 не входит в ОДЗ. Так что же, нам необходимо установить ОДЗ? Нет, конечно. Но раз мы в решении использовали некое свойство логарифмической функции, то мы обязаны обеспечить те условия, при кото­рых оно выполняется. Таким условием является положительность выражений под знаком логарифма..gif" width="65" height="48">.

    2. ..gif" width="143" height="27 src="> таким способом подстановке подлежат числа . Кому охота делать такие нудные выкладки?.gif" width="12" height="23 src="> добавить условие , и сразу видно, что этому условию отвечает только число https://pandia.ru/text/78/083/images/image128_0.gif" width="117" height="27 src=">) продемонстрировали 52% сдающих. Одной из причин таких низких показателей является тот факт, что многие выпускники не произвели отбор корней, полученных из уравнения после его возведения в квадрат.

    3) Рассмотрим, например, решение одной из задач С1: "Найдите все значения x, для которых точки графика функции лежат выше соответствующих точек графика функции ". Задание сводится к решению дробного неравенства, содержащего логарифмическое выражение. Приемы решения таких неравенств нам известны. Самым распространенным из них является метод интервалов. Однако при его применении сдающие допускают разнообразные ошибки. Рассмотрим наиболее распространенные ошибки на примере неравенства:

    X < 10. Они отмечают, что в первом случае решений нет, а во втором – корнями являются числа –1 и . При этом выпускники не учитывают условие x < 10.

    8. Заключение

    Подводя некоторый итог, можно сказать, что уни­версального метода решения уравнения и неравенств нет. Каждый раз, если хочешь понять, что делаешь, а не действовать механически, возникает дилемма: а какой способ решения выбрать, в частности искать ОДЗ или не надо? Я думаю, что полученный мною опыт поможет мне решить эту дилемму. Я перестану делать ошибки, научившись правильно использовать ОДЗ. Получится ли у меня это, покажет время, точнее ЕГЭ.

    9. Литература

    И др. «Алгебра и начала анализа 10-11» задачник и учебник, М.: «Просвещение», 2002. «Справочник по элементарной математике». М.: «Наука», 1966. Газета «Математика» №46,Газета «Математика» №Газета «Математика» № «История математики в школе VII-VIII классы». М.: «Просвещение», 1982. и др. «Самое полное издание вариантов реальных заданий ЕГЭ: 2009/ФИПИ» - М.: «Астрель», 2009. и др. «ЕГЭ. Математика. Универсальные материалы для подготовки учащихся/ФИПИ» - М.: «Интеллект-центр», 2009. и др. «Алгебра и начала анализа 10-11». М.: «Просвещение», 2007. , «Практикум по решению задач школьной математики (практикум по алгебре)». М.: Просвещение, 1976. «25000 уроков математики». М.: «Просвещение», 1993. «Готовимся к олимпиадам по математике». М.: «Экзамен», 2006. «Энциклопедия для детей «МАТЕМАТИКА»» том 11, М.: Аванта +; 2002. Материалы сайтов www. *****, www. *****.

    В математике бесконечное множество функций. И у каждой - свой характер.) Для работы с самыми разнообразными функциями нужен единый подход. Иначе, какая же это математика?!) И такой подход есть!

    При работе с любой функцией мы предъявляем ей стандартный набор вопросов. И первый, самый важный вопрос - это область определения функции. Иногда эту область называют множеством допустимых значений аргумента, областью задания функции и т.п.

    Что такое область определения функции? Как её находить? Эти вопросы частенько представляются сложными и непонятными... Хотя, на самом деле, всё чрезвычайно просто. В чём вы сможете убедиться лично, прочитав эту страничку. Поехали?)

    Ну, что тут сказать... Только респект.) Да! Естественная область определения функции (о которой здесь идёт речь) совпадает с ОДЗ выражений, входящих в функцию. Соответственно, и ищутся они по одним и тем же правилам.

    А сейчас рассмотрим не совсем естественную область определения.)

    Дополнительные ограничения на область определения функции.

    Здесь речь пойдёт об ограничениях, которые накладываются заданием. Т.е. в задании присутствуют какие-то дополнительные условия, которые придумал составитель. Или ограничения выплывают из самого способа задания функции.

    Что касается ограничений в задании - тут всё просто. Обычно, и искать-то ничего не надо, всё в задании уже сказано. Напомню, что ограничения, написанные автором задания, никак не отменяют принципиальные ограничения математики. Нужно просто не забыть учесть условия задания.

    Например, такое задание:

    Найти область определения функции:

    на множестве положительных чисел.

    Естественную область определения этой функции мы нашли выше. Эта область:

    D(f)=(-∞ ; -1) (-1; 2]

    В словесном способе задания функции нужно внимательно читать условие и находить там ограничения на иксы. Иногда глаза ищут формулы, а слова свистят мимо сознания да...) Пример из предыдущего урока:

    Функция задана условием: каждому значению натурального аргумента х ставится в соответствие сумма цифр, из которых состоит значение х.

    Здесь надо заметить, что речь идёт только о натуральных значениях икса. Тогда и D(f) мгновенно записывается:

    D(f): х N

    Как видите, область определения функции - не такое уж сложное понятие. Нахождение этой области сводится к осмотру функции, записи системы неравенств и решению этой системы. Конечно, системы бывают всякие, простые и сложные. Но...

    Открою маленький секрет. Иногда функция, для которой надо найти область определения, выглядит просто устрашающе. Хочется побледнеть и заплакать.) Но стоит записать систему неравенств... И, вдруг, системка оказывается элементарной! Причём, частенько, чем ужаснее функция, тем проще система...

    Мораль: глаза боятся, голова решает!)

    Загрузка...