kancboom.ru

Микросхемы малошумящих усилителей. Высокочувствительные микрофоны с малошумящими усилителями нч. Как схема снижает шумы

Всем привет.

При сборке малошумящих микрофонных усилков высокого качества радиолюбители чаще всего применяют схемные решения на основе дискретных биполярных либо полевых транзисторах, или же малошумящих операционных усилителях. Качественные усилки для микрофонов на транзисторах чаще всего довольно сложные и не дают гарантии на стабильную повторяемость параметров, а чтобы собрать усилитель на малошумящих ОУ может не быть под рукой нужных микросхем либо их цены окажутся больше приемлемых.

Усилитель высокого качества для стереомикрофона возможно изготовить не только на специальных малошумящих транзисторах (рис. 1,2), интегральных операционных усилителях (ОУ) либо специализированных ИМС, но и на том, что у радиолюбителей чаще всего лежит в избытке, но мало кто додумывается о потенциале некоторых «нераспространённых» микросхем. Имеются ввиду интегральные микросхемы - специализированные малошумящие усилители воспроизведения для кассетных, а также катушечных магнитофонов аналоговой записи звука. Бытовая магнитная запись звука быстро уходит в прошлое, уже отработали своё время множество импортных магнитол и автомагнитол, и при разборке их на запчасти микросхемы интегральных усилителей воспроизведения чаще всего остаются ненужными.

На основе одной из таких микросхем LA3161

вы можете изготовить простой стереоусилитель для микрофона с однополярным питанием, который не требует настройки, всего за два часа. Принципиальная схема этого усилка представлена ниже.

Данное устройство представляет собой малошумящий стереофонический усилок, который имеет коэффициент передачи по напряжению примерно 100. Номинальное напряжение для питания этого усилителя 9 Вольт, ток в покое приблизительно 6 мА, номинальное напряжение на входе 5 мВ, а номинальное напряжение на выходе 500 мВ при коэффициенте гармонических искажений 0,05%. Сопротивление на выходе примерно 100 кОм. Микросхема может работать при питании 2,5 - 16 Вольт. Но при питании меньше 7 Вольт её главные характеристики ухудшаются.

Микросхема питается от источника стабильного напряжения проходя через LC - фильтр C1L1C2C3. В частном случае в роли источника питания можно применить гальваническую батарею «Крона» либо её аналог.

Коэффициент передачи усилка зависит от соотношения сопротивления резисторов R5/R3 и R6/R4. Если есть необходимость в большом усилении по напряжению сопротивление резисторов R3 и R4 можете понизить в 10 - 20 раз. В роли микрофонов ВМ1 и ВМ2 можете использовать как динамические, так и конденсаторные микрофоны. Если отсутствует в конденсаторном либо электретном микрофоне истоковый повторитель, его можете ввести в усилитель, к примеру, поставив в каждом канале по микросхеме К513УЕ1. Конденсаторы С4 и С5 не дают проникать на вход различным радиопомехам. Резисторы R9 и R10 устраняют возможное появление «щелчка», когда происходит подключение микрофонного усилителя к аппаратуре звуковоспроизведения, а также нужны для правильной поляризации обкладок оксидных конденсаторов С10 и С11. Функциональная схема микросхемы LA3161 представлена на рисунке ниже. Если использовать только один из двух усилителей микросхемы соответствующий неинвертирующий вход (вывод 1 либо 8) нужно соединять с общим проводом.

Усилок можете собрать на плате размерами 70?27 мм (смотрите фото). В левой части платы нужно оставить свободное место, чтобы можно было установить дополнительные элементы, которые возможно потребуются, для того чтобы согласовать некоторые динамические микрофоны с входом усилителя.

Резисторы можете применить типа МЛТ, С2-23 либо их аналоги. При этом лучше учесть, то что чем выше мощность резисторов одного и того же типа, тем ниже будет их уровень собственных шумов. Если коэффициент усиления больше 500 резисторы R1 - R6 лучше поставить с мощностью 0,5 - 1 Ватт. Неполярные конденсаторы - импортные малогабаритные плёночные либо керамические. Оксидные конденсаторы С6, С7 должны иметь наименьший ток утечки. В случае если среди обыкновенных алюминиевых не удаётся найти высококачественные конденсаторы, то можете применить керамические либо плёночные конденсаторы с ёмкостью 4,7 мкФ. Дроссель L1 может быть любой малогабаритный маломощный с индуктивностью больше 100 мкГн. Если напряжение питания 12 Вольт и больше, то последовательно с ним лучше будет подключить резистор сопротивлением 1 кОм. Микросхему LA3161 можете поменять на LA3160.

Эти две микросхемы выпускает фирма Sanyo в корпусе SIP-8, у них одинаковые цоколевки выводов и похожие параметры.Микросхемы малошумящих усилков воспроизведения магнитной звукозаписи с отключенными цепями коррекции можете применять не только в роли микрофонных усилителей, но и также в узлах предварительных нормирующих усилителей, пассивных регуляторов тембра, громкости или в качестве усилителей сигналов с пьезодатчиков и пиродетекторов.

Всего вам доброго.

Some cookies are required for secure log-ins but others are optional for functional activities. Our data collection is used to improve our products and services. We recommend you accept our cookies to ensure you’re receiving the best performance and functionality our site can provide. For additional information you may view the . Read more about our .

The cookies we use can be categorized as follows:

Strictly Necessary Cookies: These are cookies that are required for the operation of analog.com or specific functionality offered. They either serve the sole purpose of carrying out network transmissions or are strictly necessary to provide an online service explicitly requested by you. Analytics/Performance Cookies: These cookies allow us to carry out web analytics or other forms of audience measuring such as recognizing and counting the number of visitors and seeing how visitors move around our website. This helps us to improve the way the website works, for example, by ensuring that users are easily finding what they are looking for. Functionality Cookies: These cookies are used to recognize you when you return to our website. This enables us to personalize our content for you, greet you by name and remember your preferences (for example, your choice of language or region). Loss of the information in these cookies may make our services less functional, but would not prevent the website from working. Targeting/Profiling Cookies: These cookies record your visit to our website and/or your use of the services, the pages you have visited and the links you have followed. We will use this information to make the website and the advertising displayed on it more relevant to your interests. We may also share this information with third parties for this purpose.

Как говорится - все гениальное просто. Данный усилитель состоит из минимума деталей, обеспечивая сигналу прохождение через минимум элементов, и тем самым оберегая его от искажений, которые эти элементы могут внести.

Усилитель имеет мощность 500мВт. Расчетный уровень искажений, при применении микросхемы на подобии OPA2134 - 0.001%. Сопротивление нагрузки 32-300 Ом.

На R1 и R2 собран регулятор громкости, точнее это один сдвоенный резистор. По входу стоит бутерброд из конденсаторов 4.7 и 0.47мкФ, позволяющий добиться максимальной линейности. На IC1.1 и IC1.2 собраны инвертирующие усилители с коэффициентом усиления равным 4. Далее Следуют повторители на транзисторах. ООС образуют R6 и R5. R11 и R12 ограничивают ток поступающий с ОУ на базы повторителей, от этого ОУ проще живется, и искажений чуть меньше. R7, R8, R9, R10 ограничивают ток транзисторов повторителя и защищают их от сквозных токов. Схема питается от двухполярного напряжения и имеет встроенные цепочки фильтрации на микросхемах-стабилизаторах 7812 и 7912. На выходе стоят конденсаторы предотвращающие попадание постоянного напряжения на выход.

В качестве IC1 можно использовать LM358 как самый доступный вариант, но для качественного звука советую поставить аналог подороже.

Печатная плата включает все элементы, кроме разъемов. Ее размеры составляют всего 50х50мм. Такой размер был выбран с целью в дальнейшем заказать платы у китайцев, уложившись в самый дешевый лот размером 5х5см. Вообще первоначально данный проект планировалось использовать как коммерческую разработку, но я все-же решил выложить его в открытый доступ.

Первая плата изготовлена методом плоттерной аппликации:

Пала небольшая, поэтому крепление осуществляется посредством штатной гайки переменного резистора. В сборе устройство выглядит так:

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 Операционный усилитель

OPA2134

1 LM358 В блокнот
Линейный регулятор

LM79L12

1 В блокнот
Линейный регулятор

LM78L12

1 В блокнот
VT1, VT3 Биполярный транзистор

BC547

2 В блокнот
VT2, VT4 Биполярный транзистор

BC557

2 В блокнот
R1, R2 Переменный резистор 50 кОм 2 В блокнот
R3, R4 Резистор

47 кОм

2 В блокнот
R5, R6 Резистор

200 кОм

2 В блокнот
R7-R12 Резистор

10 Ом

6 В блокнот
1000 мкФ 4 В блокнот
Электролитический конденсатор 100 мкФ 2 В блокнот
Электролитический конденсатор 10 мкФ 2

2008г. Email: *****@***ru Тел. моб. + Сайт: www. us8igi. *****

Схема УНЧ, АРУ и S- metra показана на рис.2. Предварительный УНЧ выполнен на малошумящем операционном усилителе DA1 - NE5532, первый каскад на DA1.1. Входное сопротивление 3.3 кОм, коэффициент усиления 19dB. Емкость С2 корректирует АЧХ по высоким частотам. Второй каскад выполнен на DA1.2, представляет собой активный фильтр нижних частот, коэффициент усиления около 3dB.

Коэффициент усиления предварительного УНЧ 22dB. АЧХ предварительного УНЧ (DA1.1, DA1.2) показана на рис.1

рис1. АЧХ предварительного УНЧ (DA1.1, DA1.2)

Входное сопротивление оконечного УНЧ выполненного на DA3 (TDA2003) равно 70 кОм.

Максимальная выходная мощность на нагрузке 8 Ом около 3 Вт, при напряжении питания 12в.

АРУ выполнено на DA2.1, DA2.2, DA2.4 (LM324) рис.2. Работает АРУ следующим образом.

Низкочастотный сигнал снимается после предварительного УНЧ. Поскольку входное сопротивление схемы АРУ равно 5,6 кОм (равное сопротивлению резистора R14), то на усиление НЧ тракта трансивера она практически не повлияет. Коэффициент усиления первого каскада 170:1, определяется соотношением резисторов R15/R14. Постоянная составляющая напряжения на выходе первого каскада (1 ножка DA2) равна половине питания, т. е. 6v, приложена к аноду диода VD1. Если ползунок подстроечного резистора R18 («порог») установлен в крайнее нижнее по схеме положение, то напряжение с ползунка резистора R18 равное 6v, через резистор R30 прикладывается к катоду диода VD1. В результате диод находится в закрытом состоянии и открывается только усиленным сигналом, амплитуда которого превышает приблизительно 0,6v. Это и есть порог (в данном случае нижний), т. е. АРУ не будет отрабатывать на тихие станции, которые не дают амплитуду сигнала на аноде диода VD1 выше «порога». Увеличивая напряжение на катоде диода VD1, с помощью резистора R18, можно отрегулировать «порог» срабатывания АРУ.


Рис.2

Далее сигнал усиливается вторым каскадом АРУ. Коэффициент усиления этого каскада и определяет на сколько приглушать станцию, уровень сигнала которой превысил «порог». Напряжение на выходе АРУ, при отсутсвии сигнала или слабого сигнала, не превышающего «порог», регулируется резистором R21 в пределах 7в-10в. От сигнала превышающего «порог», постоянная состовляющая напряжения на выходе АРУ уменьшается, вплоть до ноля вольт. А на сколько, это определяет положение движка резистора R23, которым регулируется «глубина» АРУ. Выходное сопротивление АРУ приблизительно равно выходному сопротивлению ОУ.

S- metr особенностей не имеет. Сигнал после усиления первым каскадом усиливается дополнительно на DA2.3, и после выпрямления по схеме удвоения напряжения на диодах VD3, VD4, через резистор R29 подается на стрелочный индикатор. Резистор R28 определяет скорость нарастания напряжения на выходе, а R29 определяет ток через стрелочный индикатор.

На рис.3 показана схема включения АРУ и S-metra в схему трансивера, а также как отключить АРУ, при необходимости.

Рис.3 Включение АРУ и S-metra в схему трансивера

Резисторы R3 и R4 возможно понадобятся для регулировки отклонения стрелки S-metra. Резистором R1 нужно выставить напряжение +7в-+9в, равное напряжению на вых. АРУ без сигнала.

На передней панели можно установить переключатель на два положения и отключать АРУ, когда это нужно. Причем благодаря внешнему делителю на R1 (рис.2), при выключении АРУ сигнал принимаемой станции не «выплывает как бы из-за угла», а сразу звучит в полную громкость.

Могу добавить, что первоначально задумывал переменные резисторы «порог» и «глубина» устанавливать на переднюю панель, но практика показала, что однажды отрегулировав их положение для комфортного приема, больше не крутишь. Тогда и принял решение разместить их на печатной плате.

Микрофонный усилитель двухкаскадный с коррекцией АЧХ по высоким частотам, выполнен на LM358 (DA1.1 показан на рис.4).

Рис.4 Микрофонный усилитель.

Размещение элементов на печатной плате показано на рис.5. Размеры платы 65х80мм.

Рис.5 Размещение элементов на плате

дипломная работа

2.1 Выбор схемы малошумящего усилителя

В соответствии с выше приведенными соображениями необходимо, чтобы малошумящий усилитель отвечал следующим техническим требованиям:

коэффициент усиления не менее 20 дБ;

коэффициент шума не более 3 дБ;

динамический диапазон не менее 90 дБ,

центральная частота 808 МГц.

кроме этого имел высокую стабильность характеристик, высокую надежность работы, малые габариты и вес.

Принимая во внимание предъявляемые к малошумящему усилителю требования, проведем рассмотрение возможных вариантов решения поставленной задачи. При рассмотрении возможных вариантов учтем те условия, в которых будет эксплуатироваться приемо-передающий модуль (размещение на борту летательного аппарата и воздействие внешних факторов, таких как перепад температур, вибрации, давление и т.д.). Проанализируем малошумящие усилители, выполненные с применением различной элементной базы.

Самыми малошумящими из усилителей СВЧ являются в настоящее время квантовые парамагнитные усилители (мазеры), которые характеризуются чрезвычайно низкими шумовыми температурами (менее 20 о К) и, как следствие, весьма высокой чувствительностью. Однако в состав квантового усилителя входит криогенная система охлаждения (до температуры жидкого гелия 4,2 о К), имеющая большие габариты и массу, высокую стоимость, а также громоздкую магнитную систему для создания сильного постоянного магнитного поля. Все это ограничивает область применения квантовых усилителей уникальными радиосистемами - космической связи, дальней радиолокации и т.п.

Необходимость миниатюризации радиоприемных устройств СВЧ диапазона, повышения их экономичности, уменьшения стоимости привели к интенсивному применению малошумящих усилителей на полупроводниковых приборах, к которым относятся полупроводниковые параметрические, на туннельных диодах и транзисторные усилители СВЧ.

Полупроводниковые параметрические усилители (ППУ) работают в широком диапазоне частот (0,3…35ГГц), имеют полосы пропускания от долей до нескольких процентов от центральной частоты (типичные значения 0,5…7%, но могут быть получены полосы до 40%); коэффициент передачи одного каскада достигает 17…30дБ, динамический диапазон входных сигналов 70…80дБ. В качестве генераторов накачки используются генераторы на лавинно-пролетных диодах и на диодах Ганна, а также на транзисторах СВЧ (с умножением и без умножения частоты). Полупроводниковые параметрические усилители являются самыми малошумящими из полупроводниковых и вообще из всех неохлаждаемых усилителей СВЧ. Их шумовая температура находится в интервале от десятков (на дециметровых волнах) до сотен (на сантиметровых волнах) градусов Кельвина. При глубоком охлаждении (до 20 о К и ниже) по шумовым свойствам они сравнимы с квантовыми усилителями. Однако система охлаждения увеличивает габариты, массу, потребляемую мощность и стоимость ППУ. Поэтому охлаждаемые ППУ находят применение в основном в наземных радиосистемах, где требуются высокочувствительные радиоприемные устройства, а габариты, масса, потребляемая мощность не столь существенны.

К достоинствам ППУ по сравнению с усилителями на туннельных диодах и транзисторах СВЧ помимо лучших шумовых свойств следует отнести способность работать в диапазоне более высоких частот, большее усиление одного каскада, возможность быстрой и простой электронной перестройки по частоте (в пределах 2…30%). Недостатками ППУ являются наличие СВЧ-генератора накачки, меньшая полоса пропускания, большие габариты и масса, значительно большая стоимость, в отличие от транзисторных усилителей СВЧ.

Усилители на туннельных диодах имеют по сравнению с другими полупроводниковыми усилителями меньшие габариты и массу, определяемые главным образом габаритами и массой ферритовых циркуляторов и вентилей, меньший уровень потребляемой мощности и широкую полосу пропускания. Они работают в диапазоне частот 1…20ГГц, имеют относительную полосу пропускания 1,7…65% (типичные значения 3,5…18%), коэффициент передачи одного каскада 6…20дБ, коэффициент шума 3,5…4,5дБ на дециметровых волнах и 4…7дБ на сантиметровых, динамический диапазон входных сигналов составляет 50…90дБ. Усилители на туннельных диодах применяются в основном в устройствах, где на малой площади необходимо разместить большое количество легких и малогабаритных усилителей, например в активных фазированных антенных решетках. Однако в последнее время усилители на туннельных диодах из-за присущих им недостатков (сравнительно высокий коэффициент шума, недостаточный динамический диапазон, малая электрическая прочность туннельного диода, сложность обеспечения устойчивости, необходимость развязывающих устройств) интенсивно вытесняются транзисторными усилителями СВЧ.

Основные преимущества полупроводниковых малошумящих усилителей - малые габариты и масса, малое энергопотребление, большой срок службы, возможность построения интегральных схем СВЧ - позволяют использовать их в активных фазированных антенных решетках и в бортовой аппаратуре. Причем наибольшую перспективу имеют транзисторные усилители СВЧ.

Успехи в развитии физики и технологии полупроводников сделали возможным создание транзисторов, обладающих хорошими шумовыми и усилительными свойствами и способных работать в диапазоне СВЧ. На основе этих транзисторов были разработаны СВЧ малошумящие усилители.

Транзисторные усилители в отличие от усилителей на полупроводниковых параметрических и туннельных диодах являются не регенеративными, поэтому обеспечить их устойчивую работу значительно проще, чем, например, усилителей на туннельных диодах.

В МШУ СВЧ применяются малошумящие транзисторы, как биполярные (германиевые и кремниевые), так и полевые с барьером Шоттки (на кремнии и арсениде галлия). Германиевые биполярные транзисторы позволяют получить меньший коэффициент шума, чем кремниевые, однако последние более высокочастотны. Полевые транзисторы с барьером Шоттки превосходят биполярные транзисторы по усилительным свойствам и могут работать на более высоких частотах, особенно арсенид-галлиевые транзисторы. Шумовые характеристики на относительно низких частотах лучше у биполярных транзисторов, а на более высоких - у полевых. Недостатком полевых транзисторов являются высокие входное и выходное сопротивление, что затрудняет широкополосное согласование.

Изложенные выше соображения позволяют наметить стратегию синтеза малошумящего усилителя на полевом транзисторе, в монолитном интегральном исполнении.

Как было выбрано ранее МШУ построим на основе модуля MGA - 86563. Схема электрическая принципиальная приведена на рисунке 2.1. Типовая схема включения приведена на рисунке 2.2: Рисунок 2.1 Схема электрическая принципиальная MGA-86563. Рисунок 2...

Высокочастотный приемный тракт

В результате проведенной работы был исследован малошумящий усилитель MGA86563. Исследование АЧХ МШУ производилось с помощью стенда СНПУ-135, прибора для исследования АЧХ Х1-42.Схема соединений для измерения АЧХ приведена на рисунке 4...

Измерительный преобразователь переменного напряжения в постоянное

Для реализации схемы выпрямителя применим сдвоенный быстродействующий ОУ с полевыми транзисторами на входе типа КР140УД282. Его параметры приведены в табл.5, а схема включения - на рис.8...

Малошумящий интегральный усилитель

Моделирование в системе MICRO-CAP измерительных преобразователей на основе датчиков температуры

Исходя из здания необходимо построить трехпроводную схему (2 варианта) измерения температуры при помощи ТПС с использованием источника тока(см. рис 6.2.1). № Схема Напряжение на входе ИУ при 2 Рис.6.2.1...

Проектирование усилительной части устройства

Воспользуемся схемой, представленной на рис. 5, для расчета усилителя мощности. При расчете УМ заданными величинами являются: a). Номинальная мощность в нагрузке Рн = 0,4 Вт; b). Сопротивление нагрузки Rн = 100 Ом...

Процесс моделирования работы коммутационного узла

Так как синфазная помеха не превышает 10В и коэффициент усиления не большой, то достаточно будет взять простейший дифференциальный усилитель. Схема простейшего дифференциального усилителя представлена на рисунке 5...

Разработка измерительного преобразователя

Рисунок 2 Предварительный усилитель (ПУ) представляет собой операционный усилитель (ОУ) с отрицательной обратной связью. Схема включения (ПУ) показана на рисунке 2...

Расчёт импульсного усилителя

Импульсный усилитель напряжения является предварительным усилителем сигнала, обеспечивающим нормальную работу УМ...

Синтез инвертирующего усилителя

Схема инвертирующего усилителя с отрицательной обратной связью: Рисунок 1 - Базовая схема инвертирующего ОУ с ООС...

Для удобства разработки и проведения расчетов блоки ПУ, УНЧ и УВЧ2 были объединены в общую схему. В основу построения были взяты микросхема 140-УД20А и биполярные транзисторы КТ817А...

Сравнительная характеристика технических данных радиостанций

На рисунке 7.5 приведена электрическая принципиальная схема предварительного усилителя, усилителя низкой частоты и усилителя высокой частоты УВЧ2. В основе схемы лежит микросхема 140-УД20А, которая состоит из операционных усилителей (Da1...

Схема микрофонного усилителя

Определим полный коэффициент усиления, исходя, из которого выбирается количество усилительных каскадов где полный коэффициент усиления; эффективное номинальное напряжение на выходе; эффективное номинальное напряжение на входе...

Широкополосный усилитель

Начиная разработку усилителя необходимо руководствоваться общими соображениями экономической целесообразности его производства (минимизация активных приборов, элементов и комплектующих изделий по их количеству...

Загрузка...