Получение обратной матрицы c. Матричный метод решения слау: пример решения с помощью обратной матрицы. Матричный метод в экономическом анализе
В данной статье мы расскажем о матричном методе решения системы линейных алгебраических уравнений, найдем его определение и приведем примеры решения.
Определение 1
Метод обратной матрицы - это метод, использующийся при решении СЛАУ в том случае, если число неизвестных равняется числу уравнений.
Пример 1
Найти решение системы n линейных уравнений с n неизвестными:
a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n
Матричный вид записи : А × X = B
где А = а 11 а 12 ⋯ а 1 n а 21 а 22 ⋯ а 2 n ⋯ ⋯ ⋯ ⋯ а n 1 а n 2 ⋯ а n n - матрица системы.
X = x 1 x 2 ⋮ x n - столбец неизвестных,
B = b 1 b 2 ⋮ b n - столбец свободных коэффициентов.
Из уравнения, которое мы получили, необходимо выразить X . Для этого нужно умножить обе части матричного уравнения слева на A - 1:
A - 1 × A × X = A - 1 × B .
Так как А - 1 × А = Е, то Е × X = А - 1 × В или X = А - 1 × В.
Замечание
Обратная матрица к матрице А имеет право на существование только, если выполняется условие d e t A н е р а в е н н у л ю. Поэтому при решении СЛАУ методом обратной матрицы, в первую очередь находится d e t А.
В том случае, если d e t A н е р а в е н н у л ю, у системы имеется только один вариант решения: при помощи метода обратной матрицы. Если d e t А = 0 , то систему нельзя решить данным методом.
Пример решения системы линейных уравнений с помощью метода обратной матрицы
Пример 2Решаем СЛАУ методом обратной матрицы:
2 x 1 - 4 x 2 + 3 x 3 = 1 x 1 - 2 x 2 + 4 x 3 = 3 3 x 1 - x 2 + 5 x 3 = 2
Как решить?
- Записываем систему в виде матричного уравнения А X = B , где
А = 2 - 4 3 1 - 2 4 3 - 1 5 , X = x 1 x 2 x 3 , B = 1 3 2 .
- Выражаем из этого уравнения X:
- Находим определитель матрицы А:
d e t A = 2 - 4 3 1 - 2 4 3 - 1 5 = 2 × (- 2) × 5 + 3 × (- 4) × 4 + 3 × (- 1) × 1 - 3 × (- 2) × 3 - - 1 × (- 4) × 5 - 2 × 4 - (- 1) = - 20 - 48 - 3 + 18 + 20 + 8 = - 25
d e t А не равняется 0, следовательно для этой системы подходит метод решения обратной матрицей.
- Находим обратную матрицу А - 1 при помощи союзной матрицы. Вычисляем алгебраические дополнения А i j к соответствующим элементам матрицы А:
А 11 = (- 1) (1 + 1) - 2 4 - 1 5 = - 10 + 4 = - 6 ,
А 12 = (- 1) 1 + 2 1 4 3 5 = - (5 - 12) = 7 ,
А 13 = (- 1) 1 + 3 1 - 2 3 - 1 = - 1 + 6 = 5 ,
А 21 = (- 1) 2 + 1 - 4 3 - 1 5 = - (- 20 + 3) = 17 ,
А 22 = (- 1) 2 + 2 2 3 3 5 - 10 - 9 = 1 ,
А 23 = (- 1) 2 + 3 2 - 4 3 - 1 = - (- 2 + 12) = - 10 ,
А 31 = (- 1) 3 + 1 - 4 3 - 2 4 = - 16 + 6 = - 10 ,
А 32 = (- 1) 3 + 2 2 3 1 4 = - (8 - 3) = - 5 ,
А 33 = (- 1) 3 + 3 2 - 4 1 - 2 = - 4 + 4 = 0 .
- Записываем союзную матрицу А * , которая составлена из алгебраических дополнений матрицы А:
А * = - 6 7 5 17 1 - 10 - 10 - 5 0
- Записываем обратную матрицу согласно формуле:
A - 1 = 1 d e t A (A *) T: А - 1 = - 1 25 - 6 17 - 10 7 1 - 5 5 - 10 0 ,
- Умножаем обратную матрицу А - 1 на столбец свободных членов В и получаем решение системы:
X = A - 1 × B = - 1 25 - 6 17 - 10 7 1 - 5 5 - 10 0 1 3 2 = - 1 25 - 6 + 51 - 20 7 + 3 - 10 5 - 30 + 0 = - 1 0 1
Ответ : x 1 = - 1 ; x 2 = 0 ; x 3 = 1
Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter
www.сайт позволяет найти обратную матрицу онлайн . Сайт производит вычисление обратной матрицы онлайн . За неколько секунд сервер выдаст точное решение. Обратной матрицей будет являться такая матрица , умножение исходной матрицы на которую дает единичную матрицу , при условии, что определитель начальной матрицы не равен нулю, иначе обратной матрицы для нее не существует. В задачах, когда вычисляем обратную матрицу онлайн , необходимо, чтобы определитель матрицы был отличным от нуля, иначе www.сайт выдаст соответствующее сообщение о невозможности вычислить обратную матрицу онлайн . Такую матрицу еще называют вырожденной. Найти обратную матрицу в режиме онлайн можно только для квадратной матрицы . Операция нахождения обратной матрицы онлайн сводится к вычислению определителя матрицы , затем составляется промежуточная матрица по известному правилу, и в завершении операции - умножения найденного ранее определителя на транспонированную промежуточную матрицу . Точного результата от определения обратной матрицы онлайн можно добиться, изучив теорию по этому курсу. Данная операция занимает особое место в теории матриц и линейной алгебры, позволяет решать системы линейных уравнений, так называемым, матричным методом. Задача по нахождению обратной матрицы онлайн встречается уже в начале изучения высшей математики и присутствует почти в каждой математической дисциплине как базовое понятие алгебры, являясь математическим инструментом в прикладных задачах. www.сайт находит обратную матрицу заданной размерности в режиме онлайн мгновенно. Вычисление обратной матрицы онлайн при заданной её размерности - это нахождение матрицы той же размерности в числовом ее значении, а также в символьном, найденного по правилу вычисления обратной матрицы . Нахождение обратной матрицы онлайн широко распространено в теории матриц . Результат нахождения обратной матрицы онлайн используется при решении линейной системы уравнений матричным методом. Если определитель матрицы будет равен нулю, то обратной матрицы , для которой найден нулевой определитель, не существует. Для того, чтобы вычислить обратную матрицу или найти сразу для нескольких матриц соответствующие им обратные , необходимо затратить не мало времени и усилий, в то время как наш сервер в считанные секунды найдет обратную матрицу онлайн . При этом ответ по нахождению обратной матрицы будет правильным и с достаточной точностью, даже если числа при нахождении обратной матрицы онлайн будут иррациональными. На сайте www.сайт допускаются символьные записи в элементах матриц , то есть обратная матрица онлайн может быть представлена в общем символьном виде при вычислении обратной матрицы онлайн . Полезно проверить ответ, полученный при решении задачи по нахождению обратной матрицы онлайн , используя сайт www.сайт . При совершении операции вычисления обратной матрицы онлайн необходимо быть внимательным и предельно сосредоточенным при решении данной задачи. В свою очередь наш сайт поможет Вам проверить своё решение на тему обратная матрица онлайн . Если у Вас нет времени на долгие проверки решенных задач, то www.сайт безусловно будет являться удобным инструментом для проверки при нахождении и вычислении обратной матрицы онлайн .
Для того, чтобы найти обратную матрицу онлайн, вам потребуется указать размер самой матрицы. Для этого кликните на иконки «+» или «-» до тех пор, пока значение количества столбцов и строк вас не устроит. Далее введите в поля требуемые элементы. Ниже находится кнопка «Вычислить» - нажав её, вы получите на экране ответ с подробным решением.
В линейной алгебре довольно часто приходится сталкиваться с процессом вычисления обратной матрицы. Она существует только для невыраженных матриц и для квадратных матриц при условии отличного от нуля детерминанта. В принципе, рассчитать её не представляет особой сложности, особенно если вы имеете дело с небольшой матрицей. Но если нужны более сложные расчёты или тщательная перепроверка своего решения, лучше воспользуйтесь данным онлайн калькулятором. С его помощью вы оперативно и с высокой точностью решите обратную матрицу.
С помощью данного онлайн калькулятора вы сможете значительно облегчить себе задачу в плане расчётов. Кроме того, он помогает закрепить материал, полученный в теории – это своеобразный тренажёр для мозга. Не стоит рассматривать его, как замену вычислениям вручную, он может дать вам гораздо больше, облегчив понимание самого алгоритма. К тому же, лишняя перепроверка себя никогда не помешает.
1. Находим определитель исходной матрицы. Если , то матрица- вырожденная и обратной матрицыне существует. Если, то матрицаневырожденная и обратная матрица существует.
2. Находим матрицу , транспонированную к.
3. Находим алгебраические дополнения элементов и составляем из них присоединенную матрицу.
4. Составляем обратную матрицу по формуле .
5. Проверяем правильность вычисления обратной матрицы , исходя из ее определения:.
Пример. Найти матрицу, обратную данной: .
Р е ш е н и е.
1) Определитель матрицы
.
2) Находим алгебраические дополнения элементов матрицы и составляем из них присоединенную матрицу :
3) Вычисляем обратную матрицу:
,
4) Проверяем:
№4 Ранг матрицы. Линейная независимость строк матрицы
Для решения и исследования ряда математических и прикладных задач важное значение имеет понятие ранга матрицы.
В матрице размеромвычеркиванием каких-либо строк и столбцов можно вычленить квадратные подматрицы-го порядка, где. Определители таких подматриц называютсяминорами -го порядка матрицы .
Например, из матриц можно получить подматрицы 1, 2 и 3-го порядка.
Определение. Рангом матрицы называется наивысший порядок отличных от нуля миноров этой матрицы. Обозначение:или.
Из определения следует:
1) Ранг матрицы не превосходит меньшего из ее размеров, т.е..
2) тогда и только тогда, когда все элементы матрицы равны нулю, т.е..
3) Для квадратной матрицы n-го порядка тогда и только тогда, когда матрица- невырожденная.
Поскольку непосредственный перебор всех возможных миноров матрицы , начиная с наибольшего размера, затруднителен (трудоемок), то пользуются элементарными преобразованиями матрицы, сохраняющими ранг матрицы.
Элементарные преобразования матрицы:
1) Отбрасывание нулевой строки (столбца).
2) Умножение всех элементов строки (столбца) на число .
3) Изменение порядка строк (столбцов) матрицы.
4) Прибавление к каждому элементу одной строки (столбца) соответствующих элементов другой строки (столбца), умноженных на любое число.
5) Транспонирование матрицы.
Определение. Матрица , полученная из матрицыпри помощи элементарных преобразований, называется эквивалентной и обозначаетсяА В .
Теорема. Ранг матрицы не изменяется при элементарных преобразованиях матрицы.
С помощью элементарных преобразований можно привести матрицу к так называемому ступенчатому виду, когда вычисление ее ранга не представляет труда.
Матрица называется ступенчатой если она имеет вид:
Очевидно, что ранг ступенчатой матрицы равен числу ненулевых строк , т.к. имеется минор-го порядка, не равный нулю:
.
Пример. Определить ранг матрицы с помощью элементарных преобразований.
Ранг матрицы равен количеству ненулевых строк, т.е. .
№5Линейная независимость строк матрицы
Дана матрица размера
Обозначим строки матрицы следующим образом:
Две строки называются равными , если равны их соответствующие элементы. .
Введем операции умножения строки на число и сложение строк как операции, проводимые поэлементно:
Определение. Строка называется линейной комбинацией строкматрицы, если она равна сумме произведений этих строк на произвольные действительные числа(любые числа):
Определение. Строки матрицы называютсялинейно зависимыми , если существует такие числа , не равные одновременно нулю, что линейная комбинация строк матрицы равна нулевой строке:
Где . (1.1)
Линейная зависимость строк матрицы обозначает, что хотя бы 1 строка матрицы является линейной комбинацией остальных.
Определение. Если линейная комбинация строк (1.1) равна нулю тогда и только тогда, когда все коэффициенты , то строкиназываютсялинейно независимыми .
Теорема о ранге матрицы . Ранг матрицы равен максимальному числу ее линейно независимых строк или столбцов, через которые линейно выражаются все остальные строки (столбцы).
Теорема играет принципиальную роль в матричном анализе, в частности, при исследовании систем линейных уравнений.
№6 Решение системы линейных уравнений снеизвестными
Системы линейных уравнений находят широкое применение в экономике.
Система линейных уравнений спеременными имеет вид:
,
где () - произвольные числа, называемыекоэффициентами при переменных и свободными членами уравнений , соответственно.
Краткая запись: ().
Определение. Решением системы называется такая совокупность значений , при подстановке которых каждое уравнение системы обращается в верное равенство.
1) Система уравнений называется совместной , если она имеет хотя бы одно решение, и несовместной , если она не имеет решений.
2) Совместная система уравнений называется определенной , если она имеет единственное решение, и неопределенной , если она имеет более одного решения.
3) Две системы уравнений называются равносильными (эквивалентными ) , если они имеют одно и то же множество решений (например, одно решение).
Исходной по формуле: A^-1 = A*/detA, где A* - присоединенная матрица, detA - исходной матрицы. Присоединенная матрица - это транспонированная матрица дополнений к элементам исходной матрицы.
Первым делом найдите определитель матрицы, он должен быть отличен от нуля, так как дальше определитель будет использоваться в качестве делителя. Пусть для примера дана матрица третьего (состоящая из трех строк и трех столбцов). Как видно, определитель матрицы не равен нулю, поэтому существует обратная матрица.
Найдите дополнения к каждому элементу матрицы A. Дополнением к A называется определитель подматрицы, полученной из исходной вычеркиванием i-ой строки и j-го столбца, причем этот определитель берется со знаком. Знак определяется умножением определителя на (-1) в степени i+j. Таким образом, например, дополнением к A будет определитель, рассмотренный на рисунке. Знак получился так: (-1)^(2+1) = -1.
В результате вы получите матрицу дополнений, теперь транспонируйте ее. Транспонирование - это операция, симметричная относительно главной диагонали матрицы, столбцы и строки меняются местами. Таким образом, вы нашли присоединенную матрицу A*.