Провести полное исследование указанных функций и построить их графики. Исследовать функцию вида. Вот что получилось
Достаточно часто в курсе математического анализа можно встретить задание со следующей формулировкой: «исследовать функцию и построить график» . Данная формулировка говорит сама за себя и разбивает задачу на два этапа:
- Этап 1: исследование функции;
- Этап 2: построение графика исследуемой функции.
Первый этап наиболее объемный и включает в себя отыскание областей определения и значений, экстремумов функции, точек перегиба графика и т.д.
Полный план исследования функции $y=f(x)$, предваряющий цель построение графика, имеет следующие пункты:
- Поиск области определения функции $D_{y} $ и области допустимых значений $E_{y} $ функции.
- Определение вида функции: четная, нечетная, общего вида.
- Определение точек пересечения графика функции с осями координат.
- Нахождение асимптот графика функции (вертикальные, наклонные, горизонтальные).
- Нахождение интервалов монотонности функции и точек экстремума.
- Нахождение промежутков выпуклости, вогнутости графика и точек перегиба.
Поиск области определения функции $D_{y} $ подразумевает нахождение интервалов, на которых данная функция существует (определена). Как правило, данная задача сводится к отысканию ОДЗ (область допустимых значений), на основании которых формируется $D_{y} $.
Пример 1
Найти область определения функции $y=\frac{x}{x-1} $.
Найдем ОДЗ рассматриваемой функции, т.е. значения переменной, при которых знаменатель не обращается в ноль.
ОДЗ: $x-1\ne 0\Rightarrow x\ne 1$
Запишем область определения: $D_{y} =\{ x\in R|x\ne 1\} $.
Определение 1
Функция $y=f(x)$ является четной в случае, если выполняется следующее равенство $f(-x)=f(x)$ $\forall x\in D_{y} $.
Определение 2
Функция $y=f(x)$ является нечетной в случае, если выполняется следующее равенство $f(-x)=-f(x)$ $\forall x\in D_{y} $.
Определение 3
Функция, не являющаяся ни четной, ни нечетной, называется функцией общего вида.
Пример 2
Определить вид функций: 1) $y=\frac{x}{x-1} $, 2) $y=\frac{x^{2} }{x^{2} -1} $; 3) $y=\frac{x}{x^{2} -1} $.
1) $y=\frac{x}{x-1} $
$f(-x)\ne f(x);f(-x)\ne -f(x)$, следовательно, имеем функцию общего вида.
2) $y=\frac{x^{2} }{x^{2} -1} $
$f(-x)=f(x)$, следовательно, имеем четную функцию.
3) $y=\frac{x}{x^{2} -1} $.
$f(-x)\ne -f(x)$, следовательно, имеем нечетную функцию.
Определение точек пересечения графика функции с осями координат включает нахождение точек пересечения: с осью ОХ ($y=0$), с осью OY ($x=0$).
Пример 3
Найти точки пересечения с осями координат функции $y=\frac{x+2}{x-1} $.
- с осью ОХ ($y=0$)
$\frac{x+2}{x-1} =0\Rightarrow x+2=0\Rightarrow x=-2$; получаем точку (-2;0)
- с осью ОY ($x=0$)
$y(0)=\frac{0+2}{0-1} =-2$, получаем точку (0;-2)
На основе результатов, полученных на этапе исследования функции, строится график. Иногда для построения графика функции недостаточно точек, полученных на первом этапе, тогда необходимо найти дополнительные точки.
Пример 4
Исследовать функцию и построить ее график: $y=x^{3} -6x^{2} +2x+1$.
- Область определения: $D_{y} =\{ x|x\in R\} $.
- Область значений: $E_{y} =\{ y|y\in R\} $.
- Четность, нечетность функции :\ \
Функция общего вида, т.е. не является ни четной, ни нечетной.
4) Пересечение с осями координат:
с осью OY: $y(0)=0^{3} -6\cdot 0^{2} +2\cdot 0+1=1$, следовательно, график проходит через точку (0;1).
с осью OХ: $x^{3} -6x^{2} +2x+1=0$ (рациональных корней нет)
5) Асимптоты графика:
Вертикальных асимптот нет, так как $D_{y} =\{ x|x\in R\} $
Наклонные асимптоты будем искать в виде $y=kx+b$.
$k=\mathop{\lim }\limits_{x\to \infty } \frac{y(x)}{x} =\mathop{\lim }\limits_{x\to \infty } \frac{x^{3} -6x^{2} +2x+1}{x} =\infty $. Следовательно, наклонных асимптот нет.
6) Возрастание, убывание функции; экстремумы:
\ \[\begin{array}{l} {y"=0\Rightarrow 3x^{2} -12x+2=0} \\ {D=144-24=120} \\ {x_{1,2} =\frac{12\pm \sqrt{120} }{6} } \end{array}\]
Отметим точки на числовой оси, расставим знаки первой производной и отметим поведение функции:
Рисунок 1.
Функция возрастает на $\left(-\infty ;\frac{12-\sqrt{120} }{6} \right]$ и $\left[\frac{12+\sqrt{120} }{6} ;\infty \right)$, убывает на $\left[\frac{12-\sqrt{120} }{6} ;\frac{12+\sqrt{120} }{6} \right]$.
$x=\frac{12-\sqrt{120} }{6} $ - точка максимума; $y\left(\frac{12-\sqrt{120} }{6} \right)=1,172$
$x=\frac{12+\sqrt{120} }{6} $ - точка минимума; $y\left(\frac{12+\sqrt{120} }{6} \right)=-23,172$
7) Выпуклость, вогнутость графика:
\ \[\begin{array}{l} {y""=(3x^{2} -12x+2)"=6x-12} \\ {y""=0\Rightarrow 6x-12=0\Rightarrow x=2} \end{array}\]
Отметим точки на числовой оси, расставим знаки второй производной и отметим поведение графика функции:
Рисунок 2.
График направлен выпуклостью вверх на $(-\infty ;2]$, вниз на $
8) График функции:
Рисунок 3.
Решебник Кузнецова.
III Графики
Задание 7. Провести полное исследование функции и построить её график.
        Прежде, чем Вы начнёте скачивать свои варианты, попробуйте решить задачу по образцу, приведённому ниже для варианта 3. Часть вариантов заархивированы в формате.rar
        7.3 Провести полное исследование функции и построить её график
Решение.
        1) Область определения:         или        , то есть        .
.
Таким образом:         .
        2) Точек пересечения с осью Ox нет. Действительно, уравнение         не имеет решений.
Точек пересечения с осью Oy нет, так как        .
        3) Функция ни чётная, ни нечётная. Симметрии относительно оси ординат нет. Симметрии относительно начала координат тоже нет. Так как
.
Видим, что         и        .
        4) Функция непрерывна в области определения
.
; .
; .
Следовательно, точка         является точкой разрыва второго рода (бесконечный разрыв).
5) Вертикальные асимптоты:        
Найдём наклонную асимптоту        . Здесь
;
.
Следовательно, имеем горизонтальную асимптоту: y=0
. Наклонных асимптот нет.
        6) Найдём первую производную. Первая производная:
.
И вот почему
.
Найдём стационарные точки, где производная равна нулю, то есть
.
        7) Найдём вторую производную.
Вторая производная:
.
И в этом легко убедится, так как
Для полного исследования функции и построения её графика рекомендуется использовать следующую схему:
1) найти область определения функции;
2) найти точки разрыва функции и вертикальные асимптоты (если они существуют);
3) исследовать поведение функции в бесконечности, найти горизонтальные и наклонные асимптоты;
4) исследовать функцию на чётность (нечётность) и на периодичность (для тригонометрических функций);
5) найти экстремумы и интервалы монотонности функции;
6) определить интервалы выпуклости и точки перегиба;
7) найти точки пересечения с осями координат, если возможно и некоторые дополнительные точки, уточняющие график.
Исследование функции проводится одновременно с построением её графика.
Пример 9 Исследовать функцию и построить график.
1. Область определения: ;
2. Функция терпит
разрывв точках
,
;
Исследуем функцию на наличие вертикальных асимптот.
;
,
─
вертикальная асимптота.
;
,
─
вертикальная асимптота.
3. Исследуем функцию на наличие наклонных и горизонтальных асимптот.
Прямая
─
наклонная асимптота, если
,
.
,
.
Прямая
─ горизонтальная асимптота.
4. Функция
является четной т.к.
.
Чётность функции указывает на
симметричность графика относительно
оси ординат.
5. Найдём интервалы монотонности и экстремумы функции.
Найдём критические
точки, т.е. точки в которых производная
равна 0 или не существует:
;
.
Имеем три точки
;
.
Эти точки разбивают всю действительную
ось на четыре промежутка. Определим
знакина каждом из них.
На
интервалах (-∞; -1) и (-1; 0) функция
возрастает, на интервалах (0; 1)
и
(1 ; +∞) ─ убывает. При переходе
через точку
производная меняет знак с плюса на
минус, следовательно, в этой
точке
функция имеет максимум
.
6. Найдём интервалы выпуклости, точки перегиба.
Найдём точки, в которых равна 0, или не существует.
не имеет действительных
корней.
,
,
Точки
и
разбивают действительную ось на три
интервала. Определим знак
на каждом промежутке.
Таким
образом, кривая на интервалах
и
выпуклая вниз, на интервале (-1;1) выпуклая
вверх; точек перегиба нет, т. к. функция
в точках
и
не определена.
7. Найдем точки пересечения с осями.
С осью
график
функции пересекается в точке (0; -1), а с
осью
график
не пересекается, т.к. числитель данной
функции не имеет действительных корней.
График заданной функции изображён на рисунке 1.
Рисунок 1 ─ График
функции
Применение понятия производной в экономике. Эластичность функции
Для исследования экономических процессов и решения других прикладных задач часто используется понятие эластичности функции.
Определение.
Эластичностью функции
называется предел отношения относительного
приращения функциик относительному приращению переменнойпри
,
. (VII)
Эластичность
функции показывает приближённо, на
сколько процентов изменится функция
при изменении независимой переменнойна 1%.
Эластичность
функции применяется при анализе спроса
и потребления. Если эластичность спроса
(по абсолютной величине)
,
то спрос
считают
эластичным, если
─
нейтральным, если
─
неэластичным
относительно цены (или дохода).
Пример
10
Рассчитать эластичность функции
и найти
значение
показателя эластичности для
= 3.
Решение: по формуле (VII) эластичность функции:
Пусть х=3,
тогда
.Это
означает, что если независимая
переменная
возрастёт на 1%, то значение
зависимой переменной увеличится на
1,42 %.
Пример
11
Пусть функция спроса
относительно ценыимеет вид
,
где─ постоянный коэффициент. Найти значение
показателя эластичности функции спроса
при цене х = 3 ден. ед.
Решение: рассчитаем эластичность функции спроса по формуле (VII)
Полагая
ден.ед., получим
.
Это означает, что при
цене
ден.ед. повышение цены на 1% вызовет
снижение спроса на 6%, т.е. спрос эластичен.
Провести полное исследование и построить график функции
y(x)=x2+81−x.y(x)=x2+81−x.
1) Область определения функции. Так как функция представляет собой дробь, нужно найти нули знаменателя.
1−x=0,⇒x=1.1−x=0,⇒x=1.
Исключаем единственную точку x=1x=1 из области определения функции и получаем:
D(y)=(−∞;1)∪(1;+∞).D(y)=(−∞;1)∪(1;+∞).
2) Исследуем поведение функции в окрестности точки разрыва. Найдем односторонние пределы:
Так как пределы равны бесконечности, точка x=1x=1 является разрывом второго рода, прямая x=1x=1 - вертикальная асимптота.
3) Определим точки пересечения графика функции с осями координат.
Найдем точки пересечения с осью ординат OyOy, для чего приравниваем x=0x=0:
Таким образом, точка пересечения с осью OyOy имеет координаты (0;8)(0;8).
Найдем точки пересечения с осью абсцисс OxOx, для чего положим y=0y=0:
Уравнение не имеет корней, поэтому точек пересечения с осью OxOx нет.
Заметим, что x2+8>0x2+8>0 для любых xx. Поэтому при x∈(−∞;1)x∈(−∞;1) функция y>0y>0(принимает положительные значения, график находится выше оси абсцисс), при x∈(1;+∞)x∈(1;+∞) функция y<0y<0 (принимает отрицательные значения, график находится ниже оси абсцисс).
4) Функция не является ни четной, ни нечетной, так как:
5) Исследуем функцию на периодичность. Функция не является периодической, так как представляет собой дробно-рациональную функцию.
6) Исследуем функцию на экстремумы и монотонность. Для этого найдем первую производную функции:
Приравняем первую производную к нулю и найдем стационарные точки (в которых y′=0y′=0):
Получили три критические точки: x=−2,x=1,x=4x=−2,x=1,x=4. Разобьем всю область определения функции на интервалы данными точками и определим знаки производной в каждом промежутке:
При x∈(−∞;−2),(4;+∞)x∈(−∞;−2),(4;+∞) производная y′<0y′<0, поэтому функция убывает на данных промежутках.
При x∈(−2;1),(1;4)x∈(−2;1),(1;4) производная y′>0y′>0, функция возрастает на данных промежутках.
При этом x=−2x=−2 - точка локального минимума (функция убывает, а потом возрастает), x=4x=4 - точка локального максимума (функция возрастает, а потом убывает).
Найдем значения функции в этих точках:
Таким образом, точка минимума (−2;4)(−2;4), точка максимума (4;−8)(4;−8).
7) Исследуем функцию на перегибы и выпуклость. Найдем вторую производную функции:
Приравняем вторую производную к нулю:
Полученное уравнение не имеет корней, поэтому точек перегиба нет. При этом, когда x∈(−∞;1)x∈(−∞;1) выполняется y′′>0y″>0, то есть функция вогнутая, когда x∈(1;+∞)x∈(1;+∞) выполняется y′′<0y″<0, то есть функция выпуклая.
8) Исследуем поведение функции на бесконечности, то есть при .
Так как пределы бесконечны, горизонтальных асимптот нет.
Попробуем определить наклонные асимптоты вида y=kx+by=kx+b. Вычисляем значения k,bk,b по известным формулам:
Получили, у что функции есть одна наклонная асимптота y=−x−1y=−x−1.
9) Дополнительные точки. Вычислим значение функции в некоторых других точках, чтобы точнее построить график.
y(−5)=5.5;y(2)=−12;y(7)=−9.5.y(−5)=5.5;y(2)=−12;y(7)=−9.5.
10) По полученным данным построим график, дополним его асимптотами x=1x=1(синий), y=−x−1y=−x−1 (зеленый) и отметим характерные точки (фиолетовым пересечение с осью ординат, оранжевым экстремумы, черным дополнительные точки):
Задание 4: Геометрические, Экономические задачи(не имею понятия какие, тут примерная подборка задач с решением и формулами)
Пример 3.23. a
Решение.
x
и y
y
y = a - 2×a/4 =a/2. Поскольку x = a/4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При xa/4 S " > 0, а при x >a/4 S " < 0, значит, в точке x=a/4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 (кв. ед).Поскольку S непрерывна на и ее значения на концах S(0) и S(a/2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.
Пример 3.24.
Решение.
R = 2, Н = 16/4 = 4.
Пример 3.22. Найти экстремумы функции f(x) = 2x 3 - 15x 2 + 36x - 14.
Решение.
Так как f " (x) = 6x 2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x 1 = 2 и x 2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x 1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x 2 = 3 производная меняет знак минус на плюс, поэтому в точке x 2 = 3 у функции минимум. Вычислив значения функции в точках
x 1 = 2 и x 2 = 3, найдем экстремумы функции: максимум f(2) = 14 и минимум f(3) = 13.
Пример 3.23. Нужно построить прямоугольную площадку возле каменной стены так, чтобы с трех сторон она была отгорожена проволочной сеткой, а четвертой стороной примыкала к стене. Для этого имеется a погонных метров сетки. При каком соотношении сторон площадка будет иметь наибольшую площадь?
Решение.
Обозначим стороны площадки через x
и y
. Площадь площадки равна S = xy. Пусть y
- это длина стороны, примыкающей к стене. Тогда по условию должно выполняться равенство 2x + y = a. Поэтому y = a - 2x и S = x(a - 2x), где
0 ≤ x ≤ a/2 (длина и ширина площадки не могут быть отрицательными). S " = a - 4x, a - 4x = 0 при x = a/4, откуда
y = a - 2×a/4 =a/2. Поскольку x = a/4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При xa/4 S " > 0, а при x >a/4 S " < 0, значит, в точке x=a/4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 (кв. ед).Поскольку S непрерывна на и ее значения на концах S(0) и S(a/2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.
Пример 3.24. Требуется изготовить закрытый цилиндрический бак вместимостью V=16p ≈ 50 м 3 . Каковы должны быть размеры бака (радиус R и высота Н), чтобы на его изготовление пошло наименьшее количество материала?
Решение.
Площадь полной поверхности цилиндра равна S = 2pR(R+Н). Мы знаем объем цилиндра V = pR 2 Н Þ Н = V/pR 2 =16p/ pR 2 = 16/ R 2 . Значит, S(R) = 2p(R 2 +16/R). Находим производную этой функции:
S " (R) = 2p(2R- 16/R 2) = 4p (R- 8/R 2). S " (R) = 0 при R 3 = 8, следовательно,
R = 2, Н = 16/4 = 4.
Похожая информация.